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This paper presents techniques for Fock matrix construction that are designed for

high performance on shared and distributed memory parallel computers when using

Gaussian basis sets. Four main techniques are considered. (1) To calculate electron

repulsion integrals, we demonstrate batching together the calculation of multiple shell

quartets of the same angular momentum class so that the calculation of large sets of

primitive integrals can be efficiently vectorized. (2) For multithreaded summation of

entries into the Fock matrix, we investigate using a combination of atomic operations

and thread-local copies of the Fock matrix. (3) For distributed memory parallel

computers, we present a globally-accessible matrix class for accessing distributed

Fock and density matrices. The new matrix class introduces a batched mode for

remote memory access that can reduce synchronization cost. (4) For density fitting,

we exploit both symmetry (of the Coulomb and exchange matrices) and sparsity

(of 3-index tensors) and give a performance comparison of density fitting and the

conventional direct calculation approach. The techniques are implemented in an

open-source software library called GTFock.
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I. INTRODUCTION

The complexity of modern computer hardware makes it challenging to implement com-

putational chemistry programs that substantially exploit the performance capabilities of

such hardware. This paper presents efficient techniques for constructing Fock matrices on

shared and distributed memory computers when using Gaussian basis sets. The Coulomb

and exchange components of the Fock matrix are often computed separately, as they are

needed separately in different methods, but we will usually simply refer to this as construct-

ing a Fock matrix. Let M , N , P , Q denote shell indices. Then blocks of the Coulomb and

exchange matrices are

JMN =
∑
PQ

(MN |PQ)DPQ and KMN =
∑
PQ

(MP |NQ)DPQ,

respectively, where D is the density matrix and (MN |PQ) denotes a shell quartet of elec-

tron repulsion integrals (ERI). The Coulomb and exchange matrices are not computed one

block at a time. Instead, to take advantage of the 8-way permutational symmetry in the

ERI tensor, one loops over the unique shell quartets that survive screening and computes

contributions to Coulomb and exchange matrix blocks (see Algorithm 1).

There are several pressure points that limit the ability to attain high performance when

constructing a Fock matrix. The first is the unstructured nature of ERI calculation, which

does not naturally lend itself to the SIMD or vector-like operations available on mod-

Algorithm 1 Generic structure of Fock matrix construction.

1: for unique shell quartets (MN |PQ) do
2: if (MN |PQ) is not screened out then
3: Compute shell quartet (MN |PQ)
4: JMN += (MN |PQ)DPQ

5: JPQ += (PQ|MN)DMN

6: KMP += (MN |PQ)DNQ

7: KNP += (NM |PQ)DMQ

8: KMQ += (MN |QP )DNP

9: KNQ += (NM |QP )DMP

10: end if
11: end for
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ern CPUs. To exploit these operations, the calculation must be reorganized such that

multiple primitive or contracted integrals of the same type are computed simultaneously.

Some work on ERI vectorization has been done in the past in the era of pipelined vector

supercomputers1–3 and about a decade ago for graphics processing units (GPUs)4–9. Due to

the large temporary memory requirement per integral for integrals involving high angular

momentum functions, however, how to best compute such integrals on GPUs and other

accelerators with limited memory remains an open problem.

Most recently developed integral packages have not focused on SIMD efficiency10–12. An

exception is the Simint package13 which generates code for Obara–Saika recurrence relations

for different CPU microarchitectures. Simint vectorizes the calculation of multiple primitive

integrals of the same class (involving functions with the same combination of four total

angular momentum numbers). For lightly-contracted basis sets, where atomic basis functions

are linear combinations of small numbers of Gaussian-type functions, there are only small

numbers of primitive integrals in a contracted integral. In this case, it is necessary to batch

together the calculation of primitive integrals from multiple contracted integrals of the same

class14. We discuss this in more detail in Section 2.

A second pressure point is the memory contention that arises when multiple threads on a

multicore processor attempt to accumulate the product of ERIs and density matrix elements

to the same Fock matrix location. Typically, this cost is small compared to the cost of ERI

calculation. However, in the case of lightly-contracted and moderately-contracted basis sets

(such as cc-pVDZ), where contracted integrals are less expensive to compute than for highly

contracted basis sets, the time required for an efficient vectorized ERI calculation can be

smaller than the time required for multithreaded accumulation of the Fock matrix elements.

Thus the performance of this step of Fock matrix construction must also be optimized

and some research has recently specifically addressed this14,15. We discuss Fock matrix

accumulation in more detail in Section 3. Optimizations that improve cache performance

and reduce vectorization overhead are also discussed in that section.

A third pressure point is load imbalance and communication cost when the Fock matrix is

computed on distributed memory parallel computers. When the number of compute nodes

is not large, each node can store its own partial sum of the Fock matrix and its own copy of

the density matrix. This is known as the replicated data approach. Global communication is

needed to form the fully-summed Fock matrix and to broadcast the density matrices. When
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the number of nodes is large, global communication must be avoided and a distributed

data approach is needed. In this case, the Fock and density matrices are partitioned into

blocks and the blocks are stored among the nodes. Communication occurs when a process

computing contributions to Fock matrix blocks on one node needs to read density matrix

blocks stored on other nodes; communication also occurs when contributions to Fock matrix

blocks are accumulated on the nodes that store those blocks.

A large number of techniques for the distributed data approach have been proposed,

for example, Refs 15–27. The main distinction between these techniques is whether the

workload is partitioned statically among the nodes or whether chunks of work are assigned

dynamically. In the static case, the partitioning can be chosen to minimize communication

but load balance is difficult to achieve. In the dynamic case, communication patterns are not

predictable, but load balance can be achieved naturally since work is dynamically assigned to

processes when they become idle. The size of each chunk of work must be chosen carefully;

larger chunks can reduce the required communication volume, but chunks that are too

large lead to imbalance. GTFock uses a distributed data approach on distributed memory

computers. Static partitioning is used, with work stealing when processes become idle25,26,28,

combining some of the advantages static and dynamic techniques at the cost of additional

complexity.

For the communication of the Fock and density matrix blocks in the distributed data

approach, quantum chemistry packages that support large-scale distributed memory com-

putation typically use a distributed matrix class to simplify access to the globally accessible

but distributed Fock and density matrices. Global indices, or more generally, pointers in

a global memory address space can be used to access data that is partitioned among mul-

tiple compute nodes. Such a style of programming is called a partitioned global address

space (PGAS) model and there are several PGAS matrix libraries. The Global Arrays

toolkit29 is a PGAS matrix library used in NWChem22, Molpro30, and GAMESS-UK31. The

PPIDDv2 library32 used in Molpro calls either Global Arrays or Message Passing Interface

(MPI) functions. The Generalized Distributed Data Interface (GDDI)33 is a PGAS frame-

work for one-sided distributed memory data access and is used in GAMESS15. DArray34

is a distributed array library developed for a Hartree–Fock code based on the UPC++35

PGAS extension of C++. All these libraries provide one-sided communication because, in

distributed Fock matrix construction, the compute node containing data needed by a pro-
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cess on another node, for example, may not be aware that it needs to participate in the

communication.

Previously, GTFock used Global Arrays for one-sided distributed matrix access, which

in turn used other low-level communication libraries. Global Arrays was developed at a

time when there was no portable library for one-sided communication. To improve the

portability of GTFock, now that MPI-3 is widely available for such communication, we

have developed a lightweight PGAS matrix library called “GTMatrix” that only depends

on MPI-3. GTMatrix provides only fundamental functionality: distributed storage, one-

sided communication access to a global matrix, and a distributed task counter. These

are sufficient for distributed Fock matrix construction. Different from other PGAS matrix

libraries, GTMatrix also provides a new batched mode of communication in order to try to

improve performance of certain types of matrix accesses when the number of compute nodes

is large. GTMatrix is presented in Section 4.

An algorithmic approach to reduce the cost of constructing Coulomb and exchange matri-

ces is to use density fitting36–39 or any of its many variants, see e.g., the references in Ref. 40.

Density fitting is a main feature in some codes41 and distributed memory parallel codes have

also been developed42–45. In addition to the conventional direct approach, GTFock can con-

struct Fock matrices using density fitting. In Section 5, we discuss exploiting symmetry (of

the Coulomb and exchange matrices) and sparsity (of 3-index tensors) in density fitting.

In Section 6, the performance of GTFock is demonstrated. As direct approaches for

constructing the Fock matrix have been sped up, the regime of molecular system sizes where

density matrix approaches is superior may now be smaller. Section 6 also presents an up-to-

date comparison of Fock matrix construction performance between direct and density fitting

approaches for different configurations and sizes of molecular systems.

An open-source implementation of the techniques described in this paper is available

in the GTFock library at https://github.com/gtfock-chem. GTFock can be used to

aid adoption of these techniques in new and existing quantum chemistry programs. GTFock

supports computing multiple Coulomb and exchange matrices from multiple density matrices

with a single calculation of the shell quartets. Nonsymmetric density matrices are also

supported, although GTFock implements some optimizations when the density matrices are

symmetric.
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II. BATCHING AND VECTORIZATION OF ERI CALCULATIONS

To calculate ERIs and certain one-electron integrals, GTFock uses the Simint package13

which was designed to effectively use SIMD operations. Simint calculates the contracted

integrals of a shell quartet by vectorizing the calculation of primitive integrals. The Simint

interface is similar to that of other integral packages: given shell pairs (M,N) and (P,Q)

and their associated data, Simint computes the integrals in the shell quartet (MN |PQ).

However, Simint can also compute integrals for multiple shell quartets of the same class

(involving functions with the same combination of four total angular momentum numbers)

in one call, which is called “batching.” Given a bra side shell pair list (Mi, Ni), 1 ≤ i ≤ l

and a ket side shell pair list (Pj, Qj), 1 ≤ j ≤ r, Simint efficiently computes (MiNi|PjQj),

1 ≤ i ≤ l, 1 ≤ j ≤ r in one call if all shell quartets (MiNi|PjQj) have the same class.

Batching increases the number primitive integrals that can be computed in vectorized fashion

and thus improves SIMD efficiency for lightly- and moderately-contracted basis sets. To

batch together multiple shell quartets, the calling program needs additional code to perform

batching on-the-fly.

Algorithm 2 shows how multithreaded ERI batching is implemented in GTFock. The

M,N loop (line 2) is parallelized with OpenMP multithreading. Using the P,Q loop (line 3)

as the parallelized outer loop is also possible, but the vectorization speedup of Simint in this

case is likely to be smaller compared to that of using the M,N loop as the outer loop. Each

thread maintains private shell quartet queues to generate shell quartet lists dynamically. If

a shell quartet survives the uniqueness (permutational symmetry) and Schwarz screening

tests, then it is pushed onto a queue according to the angular momentum (AM) of the P

and Q shells (lines 4–6). When a queue is full, Simint is called to compute the integrals

for all the shell quartets in the queue and these integrals are immediately used to compute

Fock matrix blocks. The queue is then reset to empty (line 7–10). When a thread has

looped over all P,Q pairs for a given M,N pair, it calls Simint with all its non-empty shell

quartet queues and then resets these queues to empty (line 13–16). This multithreaded ERI

batching algorithm does not need any locking. For additional details, see Ref. 14 where ERI

batching using Simint was first described.

Table I illustrates the effect of Simint vectorization and of batching for different ba-

sis sets. The basis sets aug-cc-pVTZ, cc-pVDZ, and ANO-DZ can be considered to be
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Algorithm 2 Multithreaded ERI batching.

1: Each thread initializes its private queues to empty
2: for shell pairs M,N in parallel do
3: for shell pairs P,Q do
4: if (MN |PQ) is unique and not screened then
5: k = index for the AM pair for shell pair (P,Q)
6: Push indices of (MN |PQ) to queue q[k]
7: if queue q[k] is full then
8: Compute (with Simint) and consume shell quartets in queue q[k]
9: Reset queue q[k] to empty

10: end if
11: end if
12: end for
13: for a non-empty queue q[i] do
14: Compute (with Simint) and consume shell quartets in queue q[i]
15: Reset queue q[i] to empty
16: end for
17: end for

lightly-contracted, moderately-contracted, and heavily-contracted basis sets, respectively.

The baseline scalar timings used Simint code that was generated without SIMD operations.

The test molecule, called protein-28, is a 30-atom system derived by truncating the 1hsg

system from the protein data bank. Shell quartet screening (tolerance 10−11) and primitive

integral screening (tolerance 10−14) were used. The tests were run using all 48 cores on a

two-socket compute node with Intel Xeon Platinum 8160 processors.

For the heavily-contracted basis set, Simint vectorization is very effective due to a large

number of primitive integrals per contracted integral, resulting in a long inner loop that can

be vectorized. For the lightly- and moderately-contracted basis sets, vectorized Simint is not

effective unless batching is used, which effectively increases the length of the inner loops.

The vectorization efficiency of Simint is different for different basis sets. Simint im-

plements the Obara–Saika recurrence relations46,47 in three steps: (1) vertical recurrence

relations (VRR), (2) contractions, (3) horizontal recurrence relations (HRR). The VRR are

vectorized much more efficiently than the HRR due to the layout of the computed quantities

in memory. Because contractions are performed after the VRR and before the HRR, highly-

contracted basis sets result in much more VRR work than HRR work. This helps explain

why highly-contracted basis sets have better speedup over the scalar case than moderately-
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and lightly-contracted basis sets even with batching.

TABLE I. ERI calculation timings (in seconds) for the protein-28 molecular system.

Scalar Vectorized Vectorized
Basis Set Basis Functions Simint w/o Simint w/o Simint w/

Batching Batching Batching
aug-cc-pVTZ 1230 53.41 47.08 15.67

cc-pVDZ 310 0.281 0.256 0.127
ANO-DZ 526 693.40 180.68 186.44

III. MULTITHREADED FOCK MATRIX ACCUMULATION

Once a shell quartet of ERIs has been computed, the ERIs are combined with density

matrix elements and accumulated into the Fock matrix. Algorithm 3 shows the sequential

Fock matrix accumulation procedure given a shell quartet (MN |PQ) that has just been

computed. In the algorithm, ERI denotes the 4-dimensional array that contains the ERIs

in (MN |PQ), with dimensions dimM × dimN × dimP × dimQ. A four-fold loop iterates

over each element in the shell quartet and computes contributions to the Coulomb and

exchange matrices, J and K. In practice, this procedure must be run by several threads

simultaneously, with each thread computing and accumulating contributions associated with

a subset of all the shell quartets, resulting in one final copy of J and K.

There are several approaches for parallelizing this procedure. A simple approach is to

use atomic operations in lines 12–14, 16–17, and 19 to accumulate values into memory

shared by all the threads48 (the variables tMP , etc., are stored in registers local to a thread).

However, atomic operations require more underlying processor instructions than their non-

atomic counterparts. Further, atomic operations can be a serial bottleneck if there are a

large number of threads competing to write to the same location at the same time. An

alternative is for each thread to sum into its own private (“thread-local”) copy of J and

K (e.g., Ref. 15). These partial sums are then summed together at the end. These final

summations can be performed using a reduction operation between all threads. The final

summations can also be performed with atomic operations, which are far fewer than if private

copies of J and K were not used.

The above two approaches can be viewed as extremes where one copy of J and K is

shared between all threads and where all threads sum into their own private copies of J
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Algorithm 3 Fock matrix accumulation into matrices J and K, given shell quartet
(MN |PQ) stored in array ERI with dimensions dimM × dimN × dimP × dimQ.

1: for iM = 1 to dimM do
2: for iN = 1 to dimN do
3: tMN = 0
4: for iP = 1 to dimP do
5: tMP = 0
6: tNP = 0
7: for iQ = 1 to dimQ do
8: I = ERI(iM, iN, iP, iQ)
9: tMN += DPQ(iP, iQ)× I

10: tMP += DNQ(iN, iQ)× I
11: tNP += DMQ(iM, iQ)× I
12: JPQ(iP, iQ) += DMN(iM, iN)× I
13: KMQ(iM, iQ) += DNP (iN, iP )× I
14: KNQ(iN, iQ) += DMP (iM, iP )× I
15: end for
16: KMP (iM, iP ) += tMP

17: KNP (iN, iP ) += tNP

18: end for
19: JMN(iM, iN) += tMN

20: end for
21: end for

and K. In the latter, storage costs and bandwidth pressure are high when there are many

threads. To balance the cost of using atomics and the cost of storage, an earlier version of

GTFock used a hybrid of these two approaches for many-core Intel Xeon Phi processors as

follows. Sets of four hyperthreads on one core share one copy of J and K and sum into this

copy using atomic operations. All the copies of J and K, which are partial sums, are then

summed using a reduction operation to produce the fully-summed J and K26. In general,

it is important to find a balance between atomic operations and the number of copies of J

and K.

A. Multithreaded Fock Matrix Accumulation with Thread-Local Buffers

1. Block buffer accumulation

Another way of balancing between the use of atomics and copies of J and K is to only use

thread-local copies of the blocks of J and K that are needed for one shell quartet (MN |PQ),
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i.e., only use copies of JMN , JPQ, KMP , KMQ, KNP , KNQ. However, these copies of the

blocks of J and K must be accumulated to the global J and K (using atomics) before

proceeding to the next shell quartet, rather than accumulating only after all shell quartets

have been processed when copies of the full J and K are used. Compared to using copies of

the full J and K, this technique dramatically reduces the amount of storage when there are

many threads, at the cost of using more atomic operations. The amount of storage needed

for each thread is very small, typically fitting in a CPU’s L1 data cache (fastest memory

local to a core). Compared to using a single shared copy of J and K, this technique uses

far fewer atomics for a very modest increase in use of memory.

An optimization on top of this technique is that if two consecutive shell quartets (for a

thread) have two indices in common, e.g., M and N , then the corresponding thread-local

block of J or K, e.g., JMN does not need to be accumulated into the global J (using atomics)

after the first shell quartet, but the contribution of the second shell quartet to JMN can be

accumulated to the same thread-local buffer. This further reduces the number of atomic

operations.

This technique was proposed in Ref. 14 and is shown here as Algorithm 4, which can be

called block buffer accumulation (“BlockBufAcc”). The buffers jMN are thread-local buffers

corresponding to the global Fock matrix blocks JMN , etc. The algorithm assumes that the

shell quartets are processed in an order such that the fourth index Q changes most rapidly,

so buffers involving this index cannot be reused between shell quartets. Performance results

reported in Ref. 14 show that this algorithm is 2 to 3 times faster than the original hybrid

algorithm used in GTFock mentioned above26 on Intel Xeon Phi Knights Landing many-core

processors.

2. Strip buffer accumulation

We now demonstrate an improvement over BlockBufAcc. The thread-local buffers used

in BlockBufAcc can be viewed as partial J and K copies. Using partial J and K copies of

a larger size would allow us to further reduce the number of atomic operations. Note that

blocks KMP , and KMQ share the same first shell index and are located in the block row or

“strip” of K that can be denoted as KM,: (Matlab colon notation). Similarly, the blocks

KNP and KNQ are located in KN,:. Let MS denote a thread-local buffer corresponding to
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Algorithm 4 Fock matrix accumulation for shell quartet (MN |PQ) using block buffers.

1: Initialize thread-local buffers kMQ, kNQ, jPQ to 0
2: for iM = 1 to dimM do
3: for iN = 1 to dimN do
4: for iP = 1 to dimP do
5: for iQ = 1 to dimQ do
6: I = ERI(iM, iN, iP, iQ)
7: jMN(iM, iN) += DPQ(iP, iQ)× I
8: kMP (iM, iP ) += DNQ(iN, iQ)× I
9: kNP (iN, iP ) += DMQ(iM, iQ)× I

10: jPQ(iP, iQ) += DMN(iM, iN)× I
11: kMQ(iM, iQ) += DNP (iN, iP )× I
12: kNQ(iN, iQ) += DMP (iM, iP )× I
13: end for
14: end for
15: end for
16: end for
17: Atomically update KMQ += kMQ

18: Atomically update KNQ += kNQ

19: Atomically update JPQ += jPQ

20: if M or P will change in the next shell quartet then
21: Atomically update KMP += kMP and set kMP to 0
22: end if
23: if N or P will change in the next shell quartet then
24: Atomically update KNP += kNP and set kNP to 0
25: end if
26: if M or N will change in the next shell quartet then
27: Atomically update JMN += jMN and set jMN to 0
28: end if

KM,: and let NS denote a thread local buffer corresponding to KN,:. Assuming that the

indices M and N change slowly compared to indices P and Q as we loop through the shell

quartets (on a thread), then the buffer MS can be continuously used by a thread until index

M changes and MS must be accumulated to the global K (similarly for NS). Thus these

buffers can be used for local accumulation of contributions to KMP , KMQ, KNP , and KNQ

on a thread for many different values of the indices P and Q. For contributions to JMN and

JPQ, we use two thread-local buffers jMN and jPQ like in Algorithm 4 since we assume the

indices P and Q change rapidly.

Algorithm 5 shows this technique of using local buffers that correspond to strips of K,

which we call strip buffer accumulation (“StripBufAcc”). In the algorithm, we use a subscript
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Algorithm 5 Fock matrix accumulation for shell quartet (MN |PQ) using strip buffers.

1: Initialize thread-local buffer jPQ to 0
2: for iM = 1 to dimM do
3: for iN = 1 to dimN do
4: for iP = 1 to dimP do
5: for iQ = 1 to dimQ do
6: I = ERI(iM, iN, iP, iQ)
7: jMN(iM, iN) += DPQ(iP, iQ)× I
8: jPQ(iP, iQ) += DMN(iM, iN)× I
9: MSP (iM, iP ) += DNQ(iN, iQ)× I

10: MSQ(iM, iQ) += DNP (iN, iP )× I
11: NSP (iN, iP ) += DMQ(iM, iQ)× I
12: NSQ(iN, iQ) += DMP (iM, iP )× I
13: end for
14: end for
15: end for
16: end for
17: if M and N will change in the next shell quartet then
18: Atomically update JMN += jMN and reset jMN to zero
19: end if
20: Atomically update JPQ += jPQ

21: if M will change in the next shell quartet then
22: Atomically update K with MS and reset MS to zero
23: end if
24: if N will change in the next shell quartet then
25: Atomically update K with NS and reset NS to zero
26: end if

to indicate the block in MS and NS, e.g., Q in MSQ. The storage required for MS and

NS is not too large. Assuming fewer than 10,000 basis functions and basis sets containing

up to g functions, the combined storage for MS and NS is less than 2.4 MB. When working

with a block such as MSP , the working set is small enough to fit in L1 data cache, like in

Algorithm 4. A performance comparison of StripBufAcc and BlockBufAcc will be given in

Section VI.

Using strip buffers appears to be first proposed by Mironov et al.15 However, instead

of using atomic operations to update the Fock matrix, Mironov et al.15 synchronize the

threads before updating the global Fock matrix from the data in the strip buffers. Mironov

et al. compared using strip buffers with thread synchronization against using an entire Fock

matrix copy for each thread. Timing results showed that the thread synchronization cost
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is low for small numbers of threads, but high for larger numbers of threads: when using 64

threads on an Intel Xeon Phi 7210 processor, using strip buffers with thread synchronization

is about 50% slower than using thread-private Fock matrix copies.

B. Improving Memory Locality

In modern processors, data is transferred between memory and cache in blocks of fixed

size called a “cache line.” The typical cache line size for CPUs is 64 bytes. Assuming double

precision floating point numbers, fetching a 3-by-3 block (72 bytes) from a matrix requires

transferring 3 to 6 cache lines (192 to 384 bytes) from memory to the cache. The number

of transferred cache lines depends on the size of the matrix. Considering that the Fock and

density matrices are larger than 100 × 100 in most cases, the memory locality of accessing

blocks in Fock and density matrices is very poor.

To improve the memory locality of accessing blocks in Fock and density matrices, we use

a block storage scheme for these matrices. The matrix elements in a block corresponding

to a shell pair are stored contiguously and an indexing scheme gives the actual location in

memory of each block from the shell indices. The density matrix is packed into this storage

scheme for Fock matrix construction. The Fock matrix is constructed in this storage scheme

and then unpacked into standard dense matrix storage format when the construction is

completed.

C. Reducing SIMD Overhead

After reducing the use of atomic operations, the performance of Fock matrix accumulation

is still bounded by two factors: (1) the flop-per-byte ratio of Fock matrix accumulation is low,

and (2) the length of the innermost loop, dimQ, which corresponds to the number of basis

functions in a shell, is usually very small, which leads to high vectorization overhead. To

address this second issue, we created five specialized kernels for Fock matrix accumulation,

corresponding to different allowed values of dimQ: 1, 3, 6, 10, 15 (assuming Cartesian basis

functions). In these specialized kernels, the length of the innermost loop is known at compile

time, and the compiler unrolls these loops to reduce vectorization overhead. For dimQ ≥ 21,

we use a general kernel where we require the compiler to vectorize the innermost loop.
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IV. GTMatrix: DISTRIBUTED MATRIX CLASS FOR ONE-SIDED

GLOBAL MATRIX ACCESS

A. GTMatrix Interface

GTFock uses GTMatrix to store the density and Fock matrices in distributed fashion

on distributed memory parallel computers. As mentioned in the Introduction, GTMatrix is

implemented using MPI-3. GTMatrix uses 2D partitioning to distribute a matrix among a

set of MPI processes with a user-specified process grid and user-specified sizes of each matrix

block. Figure 1 shows an example of a matrix distributed over a 3× 2 process grid.

GTMatrix supports three types of access operations: fetching a block of a global matrix

to a local matrix (“get”), overwriting a block of a global matrix using values in a local matrix

(“put”), and accumulating values of a local matrix to a block of a global matrix (“acc”).

GTMatrix provides three modes for accessing a global matrix: blocking access, nonblock-

ing access, and batched access. The blocking access mode is used for completing an access

as soon as possible. When a blocking access function returns, the access is completed. The

nonblocking access mode is used for overlapping an access operation with local computation

or other access operations. When a nonblocking access function returns, the access is posted

but not completed. The calling program must explicitly call the provided “wait” function

to wait for the completion of nonblocking accesses. The Global Arrays toolkit provides

both blocking and nonblocking access modes and UPC++ uses nonblocking access mode by

P0 P1

P2 P3

P4 P5

FIG. 1. GTMatrix of size 10 × 10 distributed over a 3 × 2 process grid. The partitioning of the

matrix and the process grid are the same as those in Listing 2. The processes are numbered P0 to

P5. Matrix entries that have the same color are stored in the same process, for example, all green

matrix entries are stored on process P3. GTMatrix numbers the processes in row major order.
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default for almost all operations.

Batched access mode is a new access mode introduced by GTMatrix. It is designed to

accelerate two communication patterns: (1) a process making a large number of accesses to

another process and (2) many-to-many communications. A batched access is performed in

two stages: (1) submitting batched access requests and (2) completing the accesses. When

a batched access request is submitted, it is queued instead of being posted immediately like

in nonblocking access mode. Access operations are posted and completed when a program

calls an “exec” function to explicitly complete these accesses. In this exec operation, a

calling process only synchronizes with each target process once for all requests in order to

reduce synchronization overhead, and a ring algorithm is used to accelerate many-to-many

communications. This exec operation is blocking and cannot be overlapped with other

operations. All local buffers associated with batched access requests cannot be reused until

these batched access requests are completed.

Similar to Global Arrays, GTMatrix guarantees the atomicity of accumulating values

into a global matrix in all access modes. For all put operations in batched mode, GTMatrix

guarantees that all put operations are posted in the order of submission, but GTMatrix

depends on the underlying MPI-3 implementation regarding the order of completion of

these operations.

GTMatrix provides a C language interface with a syntax that is similar to the syntax

of Global Arrays. Listing 1 shows this interface. All access functions use the same set of

parameters as specified in lines 12–13. In this set of parameters, the block to be accessed is

the row num-by-col num block whose top-left corner is (row start, col start) in the global

matrix. The src buf array is a local row-major buffer with leading dimension src buf ld

that stores the data to be sent or the data after it is fetched.

Listing 2 gives some simple examples of the use of GTMatrix. Lines 3–11 create the

GTMatrix shown earlier in Figure 1. All processes in the MPI communicator mpi comm store

one block of the global matrix as shown in the figure. Line 21 demonstrates the get operation

using nonblocking access mode. Lines 25–29 demonstrate the accumulate operation using

batched access mode. Note that get, put, and accumulate operations cannot be combined

within a batched access epoch, as such combinations would depend on the order of the

accesses, which would not be preserved when accesses are coalesced.
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Listing 1. C interface of GTMatrix

1 // Crea te and i n i t i a l i z e a GTMatrix s t r u c t u r e
2 int GTM_create(GTMatrix_t *gtm , MPI_Comm comm , MPI_Datatype datatype ,
3 int unit_size , int nrows , int ncols , int r_blocks , int c_blocks ,
4 int *r_displs , int *c_displs
5 );
6 // Des t roy a GTMatrix s t r u c t u r e
7 int GTM_destroy(GTMatrix_t gtm);
8
9 // Data a c c e s s f u n c t i o n s in GTMatrix have t h e same parameters ,

10 // grouped in a macro here f o r conven i ence
11 #define GTM_PARAM \
12 GTMatrix_t gtm , int row_start , int row_num , \
13 int col_start , int col_num , void *src_buf , int src_buf_ld
14
15 // B l o c k i n g g e t / pu t / accumula te a b l o c k
16 int GTM_getBlock(GTM_PARAM );
17 int GTM_putBlock(GTM_PARAM );
18 int GTM_accBlock(GTM_PARAM );
19
20 // Nonb l o ck ing g e t / pu t / accumu la te a b l o c k
21 int GTM_getBlockNB(GTM_PARAM );
22 int GTM_putBlockNB(GTM_PARAM );
23 int GTM_accBlockNB(GTM_PARAM );
24 // Wait f o r a l l o u t s t a n d i n g non b l o c k i n g c a l l s p o s t e d by
25 // t h e c a l l i n g MPI p r o c e s s
26 int GTM_waitNB(GTMatrix_t gtm);
27
28 // S t a r t a b a t c h ed g e t / pu t / accumu la t i on epoch and a l l ow
29 // t h i s p r o c e s s t o submi t g e t / pu t / accumu la t i on r e q u e s t s
30 int GTM_startBatchGet(GTMatrix_t gtm);
31 int GTM_startBatchPut(GTMatrix_t gtm);
32 int GTM_startBatchAcc(GTMatrix_t gtm);
33
34 // Add a r e q u e s t t o g e t / pu t / accumu la te a b l o c k
35 int GTM_addGetBlockRequest(GTM_PARAM );
36 int GTM_addPutBlockRequest(GTM_PARAM );
37 int GTM_addAccBlockRequest(GTM_PARAM );
38
39 // Execu te a l l g e t / pu t / accumu la te r e q u e s t s in t h e queues
40 int GTM_execBatchGet(GTMatrix_t gtm);
41 int GTM_execBatchPut(GTMatrix_t gtm);
42 int GTM_execBatchAcc(GTMatrix_t gtm);
43
44 // Stop a ba t c h ed g e t / pu t / accumu la te epoch
45 int GTM_stopBatchGet(GTMatrix_t gtm);
46 int GTM_stopBatchPut(GTMatrix_t gtm);
47 int GTM_stopBatchAcc(GTMatrix_t gtm);
48
49 // Symmetrize a matr ix , i . e . (A+AˆT)/2 , f o r i n t and dou b l e t y p e s
50 int GTM_symmetrize(GTMatrix_t gtm);
51
52 // Synch ron i z e a l l p r o c e s s e s
53 int GTM_sync(GTMatrix_t gtm);
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Listing 2. Example Code Using GTMatrix

1 // Crea te a 10 ∗ 10 matr i x o f t y p e dou b l e
2 // d i s t r i b u t e d on a 3 row ∗ 2 column p r o c e s s g r i d
3 GTMatrix_t gtm;
4 int nrow = 10, ncol = 10;
5 int n_rowblk = 3, n_colblk = 2;
6 int r_displs [4] = {0, 3, 6, 10};
7 int c_displs [3] = {0, 5, 10};
8 GTM_create(
9 &gtm , mpi_comm , MPI_DOUBLE , sizeof(double),

10 nrow , ncol , n_rowblk , n_colblk , &r_displs [0], &c_displs [0]
11 );
12
13 // A f t e r t h e GTMatrix i s c r ea t ed , t h e l o c a l ma t r i x b l o c k can be
14 // i n i t i a l i z e d by s t o r i n g da ta in ar ray gtm−>ma t b l o c k in row−major
15 // orde r w i t h l e a d i n g d imens ion gtm−> l d l o c a l .
16 // GTM sync ( gtm ) s hou l d be c a l l e d a f t e r i n i t i a l i z a t i o n
17 // to p r e v en t premature a c c e s s t o t h e mat r i x .
18
19 // Use non b l o c k i n g mode to g e t a b l o c k [ r s0 : r s0+rn0−1, c s0 : c s0+cn0−1] from
20 // g l o b a l mat r i x t o l o c a l row−major b u f f e r bu f 0 w i t h l e a d i n g d imens ion l d 0
21 GTM_getBlockNB(gtm , rs0 , rn0 , cs0 , cn0 , buf0 , ld0);
22 GTM_waitNB(gtm);
23
24 // Use ba t c h ed mode to accumu la te mu l t i p l e l o c a l b l o c k s t o g l o b a l mat r i x
25 GTM_startBatchAcc(gtm);
26 for (int i = 0; i < num_acc_blk; i++)
27 GTM_addAccBlockRequest(gtm ,rs[i],rn[i],cs[i],cn[i],buf[i],ld[i]);
28 GTM_execBatchAcc(gtm);
29 GTM_stopBatchAcc(gtm);
30
31 // Des t roy t h e GTMatrix s t r u c t u r e
32 GTM_destroy(gtm);

B. Using GTMatrix Efficiently for Fock Matrix Construction

To reduce communication time, different GTMatrix access modes should be used for

different access patterns. If a static shell quartet partitioning scheme is used, the necessary

communication of the Fock and density matrix blocks is known before calculation starts.

Since static partitionings are coarse (one partition for each node), each process usually needs

to access a large number of blocks in the Fock and density matrices distributed on many

different target processes. Batched access mode can be used to accelerate such many-to-

many communications. Alternatively, each process can also partition all its shell quartets

into multiple sub-tasks and use nonblocking access mode to overlap the accesses to the

density matrix with local ERI calculations.

If a dynamic task scheduler is used, each process can partition its assigned shell quartets
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into multiple sub-tasks and use nonblocking access mode for fetching density matrix blocks

such that communication is pipelined and overlapped with computation. If the workload in

each sub-task is small, the extra cost of splitting and pipelining the communications may

cancel out the performance improvement of overlapping communication with computation.

The program may also use blocking access mode for fetching density matrix blocks before

ERI calculation if the communication volume is relatively small. For accumulating the local

Fock matrix sum to the global Fock matrix, the program could use batched access mode to

accelerate the many-to-many communications.

We first describe the GTFock algorithm for distributed-memory Fock matrix construction

before discussing how we use GTMatrix in GTFock. In GTFock, each process gathers blocks

of the global density matrix it needs before commencing ERI calculations. We call this pro-

cedure “GatherD”. After computing the contribution to Fock matrix blocks associated with

all shell quartets in a task, each process does not immediately accumulate the contribution

to Fock matrix blocks into corresponding global Fock matrix blocks. Instead, each process

has a Fock matrix buffer containing Fock matrix elements that this process will access if

no task stealing occurs. Contributions to the Fock matrix blocks of a task will be accumu-

lated into the Fock matrix buffer on the process that this task originally belongs to. We

call this procedure “AccFBuf”. Compared to directly accumulating the contribution into

corresponding global Fock matrix blocks, using a Fock matrix buffer as mentioned above has

a smaller local memory footprint and smaller network communication volume. Finally, each

process accumulates its Fock matrix buffer into corresponding global Fock matrix blocks.

We call this procedure “ScatterF”.

We use different access modes for different communication procedures in GTFock. For

GatherD, we use batched access mode to accelerate many-to-many communication. For

AccFBuf, we use nonblocking access mode since it is unnecessary to finish the accumulation

immediately. For ScatterF, we use batched access mode to reduce synchronization cost and

accelerate many-to-many communication since each process needs to update a large number

of blocks on different target processes.
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C. Implementation of GTMatrix

1. Passive target synchronization

Remote memory access operations in MPI-3 are nonblocking. Thus, a mechanism is

needed to indicate when the access operations are completed. For example, we must know

when a nonblocking get operation is completed so that we can use the result. GTMatrix uses

MPI-3 passive target synchronization to signal completion, which only involves the origin

process (i.e., caller of the get, put, or accumulate operation) and not the target process. The

origin process calls an “unlock” function that waits or blocks until the access operation is

completed.

2. MPI derived data types

MPI derived data types (DDTs) describe memory layouts and are convenient to use

when data to be accessed is not laid out contiguously in memory. GTMatrix uses row-

major storage for the portion of the matrix stored on a process. Accessing blocks containing

just a portion of multiple rows stored on a process involves noncontiguous memory access.

GTMatrix thus uses MPI DDTs, which can result in better performance than if rows of the

block are sent with separate communication calls, or if packing and unpacking of the rows

are performed explicitly by the sender and receiver. Packing and unpacking also interferes

with the need to perform one-sided accesses. MPI DDTs specify how to pack and unpack

data within the MPI library and can avoid unnecessary data copying on some hardware49.

To reduce the overhead of creating and releasing MPI DDTs, GTMatrix predefines MPI

DDTs for all possible sizes of matrix blocks up to 16×16 (this size can be adjusted at compile

time). For accessing larger matrix blocks, a MPI DDT is defined and used just-in-time and

released after posting the access operation.

We note that the blocked storage scheme in Section III B is used for GTFock’s internal

representation of blocks of the density and Fock matrices (e.g., the Fock matrix buffer

mentioned in the previous subsection), not for GTMatrix. A conversion between this internal

representation and GTMatrix storage is needed, as mentioned in Section III B.
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3. MPI shared memory

GTMatrix explicitly uses MPI shared memory to accelerate intra-node MPI process com-

munication. Many MPI implementations can accelerate intra-node communication using

shared-memory automatically, but manually and explicitly using shared memory for intra-

node communication has a smaller overhead. When creating a global matrix, GTMatrix first

creates a shared memory MPI window and allocates memory in this window. GTMatrix

then creates a global MPI window using the memory allocated in the shared memory MPI

window. For read operations, if the target process (the process containing the target data)

are on the same node as the source process, GTMatrix uses direct memory copy in the shared

memory MPI window instead of MPI Get. For put and accumulation operations, GTMatrix

always uses MPI Accumulate in the global MPI window to guarantee the atomicity of these

operations.

4. Nonblocking access mode

Nonblocking access mode in GTMatrix is different from nonblocking access mode in

other PGAS frameworks. GTMatrix does not store or provide a handle for checking the

status of each nonblocking access. Instead, GTMatrix only allows a program to wait for

the completion of all outstanding nonblocking accesses. We made this design choice because

the functions that provide a handle (such as MPI Rput and MPI Raccumulate, where “R”

stands for “request handle”) have larger overheads compared to those that don’t (such as

MPI Put and MPI Accumulate).

5. Batched access mode

Batched access mode in GTMatrix does not simply store all batched access requests and

then perform access operations one by one. When a batched access request is submitted,

this access request is decomposed into multiple single-target access requests such that each

of these new requests has only one target process. Each single-target access request is then

pushed onto a local queue associated with the target process. No actual communication

operation is posted when a batched access request is submitted. All batched access requests

are posted and completed when the application code calls GTMatrix explicitly to complete
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all access requests. The source process only synchronizes with each target process once

for completing all access requests instead of synchronizing for each access request like in

blocking access mode. A ring algorithm is used as the communication algorithm; a source

process Ps completes its access requests to target process Pt in the following order: t =

s, s+ 1, . . . , p− 1, p, 1, 2, . . . , s− 2, s− 1. The ring algorithm aims to lower the likelihood of

hotspots, i.e., data on one process being accessed by a large number of other processes at

the same time.

V. DENSITY FITTING

Density fitting is a method of approximating the ERI tensor, for example,

(pq|rs) ≈
∑
P,Q

(pq|P )[J−1]PQ(Q|rs)

where uppercase P and Q are indices of basis functions belonging to an auxiliary basis set

and [J ] is the Coulomb fitting metric. In practice, we compute and store

BQ
pq =

∑
P

(pq|P )[J−1/2]PQ (1)

so that

(pq|rs) ≈
∑
Q

BQ
pqB

Q
rs

although these integrals are never explicitly formed when computing the Coulomb and ex-

change matrices in density fitting.

Using BQ
pq and the density matrix D, the Coulomb matrix J is computed in two steps,

V Q =
∑
r,s

BQ
rsDrs (2)

Jpq =
∑
Q

BQ
pqV

Q. (3)

In the usual case where J is symmetric, GTFock saves a factor of two in computations by

computing V Q above only for r ≥ s and only computing Jpq for p ≥ q.

21



The exchange matrix K is also computed in two steps. Let Cri denote the expansion

coefficients for the i-th occupied molecular orbital. Then, assuming symmetry of the density

matrix,

WQ
pi =

∑
r

CriB
Q
pr, (4)

Kpq =
∑
Q

∑
i

WQ
piW

Q
qi . (5)

GTFock also exploits any symmetry in K as follows. We first note that (5) is a matrix

multiplication and is most efficiently calculated using optimized library functions. GTFock

partitions K into submatrices size b× b (nominally) and only computes the submatrices in

the block upper triangular part of K using optimized matrix multiplication in the batched

BLAS library, which supports simultaneous matrix multiplication of small submatrices50.

If b is too small, the flop-per-byte ratio of matrix multiplication is not large enough to

obtain good performance; larger b leads to more redundant computation in the diagonal

submatrices. In practice, we choose b = max(64, n/10) for n basis functions.

Schwarz screening can be applied in density fitting to reduce the cost of certain computa-

tions51. From the upper bound provided by the Schwarz inequality, (pq|P ) ≤
√

(pq|pq)(P |P ),

if (pq|pq) is small then (pq|P ) can be neglected. More precisely, if σ is a threshold on the

size of (pq|P ), then (pq|P ) can be neglected if

(pq|pq) < σ2

maxP (P |P )
, (6)

where maxP (P |P ) is the maximum value of (P |P ) over all P . In practice, screening is

performed per pair of shells and then, for those shell pairs that survive, screening is performed

for basis function pairs within those shell pairs.

The sparsity pattern of BQ
pq is the same as the sparsity pattern of (pq|P ) after screening

since contracting (pq|P ) with the dense matrix [J−1/2]PQ does not change the pq sparsity.

With a sparse BQ
pq, memory requirements are reduced and the cost of computing (2), (3), and

(4) is reduced. However, (5) does not benefit from screening, which makes the performance

of density fitting less competitive for large molecular systems, when compared to the direct

method where ERIs are computed directly and can be effectively screened.
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To compute BQ
pq in (1), (pq|P ) is first computed and stored in dense matrix format where

rows correspond to pq that have survived screening and columns correspond to P . Then BQ
pq

can be formed by dense matrix multiplication of (pq|P ) by [J−1/2]PQ with optimized library

functions. The resulting BQ
pq is in the same dense matrix format as (pq|P ).

To compute V Q and Jpq, we note that the expressions (2) and (3) correspond to dense

matrix-vector multiplication, for which optimized library functions are also available. In (2),

only the portion of D corresponding to the rs that have survived screening is needed. In

(3), only the elements of J corresponding to pq that have survived screening are computed.

To compute WQ
pi in (4), note that in terms of matrices, WQ

pi is formed by W (i, Q) =∑
r C(r, i)TB(r,Q) for every p. Due to shell pair screening, for a given p, only nonzero rows

of B(r,Q) are stored (as a dense matrix). In order to use optimized matrix multiplication

library functions to compute W (i, Q), for each p, we need a dense matrix consisting of the

the nonzero rows of C(r, i). Thus, we form these auxiliary dense matrices and use them in

the optimized matrix multiplication functions.

To perform the above density fitting calculations on a distributed memory computer,

GTFock partitions BQ
pq, V

Q, and WQ
pi along the Q dimension and distributes the calculations

to each node. Partitioning along other any other dimension would require multiple large-

volume communication steps. Partitioning along the Q dimension only requires reducing

the partial sums of the Coulomb and exchange matrices on each node to obtain the final

results.

The GTFock distributed density fitting implementation uses only uses MPI for commu-

nication and does not need to use Global Arrays or GTMatrix.

VI. TEST CALCULATIONS

Test calculations were performed using the Intel Xeon Skylake nodes on the Stampede2

supercomputer at Texas Advanced Computing Center. Each of these nodes has two sockets

and 192 GB DDR4 memory, and each socket has an Intel Xeon Platinum 8160 processor with

24 cores and 2 hyperthreads per core. The interconnect system on Stampede2 is a 100 Gbps

Intel Omni-Path network with a fat tree topology employing six core switches. Codes were

compiled with Intel C/C++ compiler and Intel MPI version 17.0.3 with optimization flags

“-xHost -O3”. Intel MKL version 17.0.3 was used to perform batched dense matrix-matrix
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multiplication in density fitting routines.

The tolerance for shell quartet screening in GTFock was chosen to be 10−11. The tolerance

for primitive integral screening used inside Simint was chosen to be 10−14. All reported

timings for Fock matrix construction were averaged over the self-consistent field iterations

needed for a Hartree–Fock calculation.

A. Direct Approach Performance

In previous work14, we found that using Simint, ERI batching, and block buffer accumu-

lation (Algorithm 4) for Fock matrix construction gave a 2–3 times speedup compared to not

using these features. In this section, these features form the baseline for our performance

comparisons. The baseline tests used Global Arrays v5.3.

The improved version of GTFock benchmarked here uses strip buffer accumulation (Algo-

rithm 5), optimizations described in Sections III B and III C, and GTMatrix (Global Arrays

is replaced compared to the baseline).

The test calculations used molecular systems derived from a protein-ligand system, 1hsg

from the protein data bank. These systems consist of the ligand and a portion of its protein

environment. For the three test systems called 1hsg-60 (713 atoms), 1hsg-70 (791 atoms),

and 1hsg-90 (1208 atoms), all protein residues within 6, 7, and 9 Å from the ligand are

included, respectively. Bonds cut by the truncation are capped appropriately26.

Tests were performed using a moderately-contracted basis set, cc-pVDZ. In this basis set,

1hsg-60, 1hsg-70, and 1hsg-90 have 6895, 7645, and 11758 basis functions, respectively. The

tests were performed using 64 nodes of the Stampede2 system described above.

Table II shows the timings for calculating the Fock matrix, comparing the baseline and

improved versions. The timings are separated into its components. We observe a reduction

of approximately 36% in the timings for Fock matrix accumulation and a reduction of ap-

proximately 35% in the timings for GTMatrix communication when comparing the baseline

and improved versions.

Table III focuses on the communication portion of the above timings. The table shows

timings for the communication procedures discussed in Section IV B and for each commu-

nication procedure we compare GTFock using Global Arrays and GTFock using the three

different access modes in GTMatrix, including the new batched access mode.
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TABLE II. Timings (in seconds) for GTFock baseline and improved Fock matrix construction

(direct approach), separated into batched ERI calculation (“ERI”), Fock matrix accumulation

(“Accum”), task scheduling (“Task”), and GTMatrix communication (“Comm”).

Procedure GTFock GTFock
Baseline Improved

1hsg-60 ERI 5.48 5.48
Accum 5.90 3.78
Task 0.55 0.57
Comm 1.15 0.76
Total 13.08 10.59

1hsg-70 ERI 7.46 7.46
Accum 7.60 4.82
Task 1.12 1.05
Comm 1.45 0.93
Total 17.63 14.26

1hsg-90 ERI 16.48 16.48
Accum 19.85 12.27
Task 3.21 3.51
Comm 3.76 1.80
Total 42.32 34.06

The main observation is that the new batched access mode appears best for the GatherD

and ScatterF procedures. The improvement for GatherD is due to the GTMatrix ring

algorithm. The improvement for ScatterF is due to both the ring algorithm and the reduction

of synchronization cost since each MPI process needs to post many accesses to other processes

in ScatterF. As mentioned, these tests used 64 compute nodes. More benefit is expected for

more nodes.

The AccFBuf procedure only involves a single target node (the node from which work

was stolen or the process’s own node if no work was stolen) and at most three accumulation

operations, so does not benefit from batched access mode.

GTMatrix nonblocking mode has similar and sometimes better performance than Global

Arrays nonblocking mode. The better performance might be explained by the extra cost of

creating and maintaining handles in Global Arrays nonblocking mode, as otherwise perfor-

mance mostly depends on the underlying network capabilities in this mode.

B. Density Fitting Performance

For density fitting, tests were performed using a moderately-contracted basis set, cc-

pVDZ, with the auxiliary basis set cc-pVDZ-RI52. Tests were conducted on a set of alkane,

graphene, and small protein-ligand systems shown in Table IV. We used a screening thresh-
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TABLE III. Timings (in seconds) of communication procedures in Fock matrix construction using

nonblocking Global Arrays operations and different access modes in GTMatrix. See Section IV B

for an explanation of the communication procedures.

Comm. Global Arrays GTMatrix
Procedure Nonblocking Blocking Nonblocking Batched

1hsg-60 GatherD 0.473 0.482 0.357 0.329
AccFBuf 0.183 0.110 0.110 0.110
ScatterF 0.496 0.536 0.511 0.318
Total 1.152 1.138 0.978 0.757

1hsg-70 GatherD 0.613 0.602 0.432 0.404
AccFBuf 0.237 0.132 0.132 0.132
ScatterF 0.603 0.664 0.620 0.391
Total 1.453 1.398 1.184 0.927

1hsg-90 GatherD 1.277 1.334 0.864 0.861
AccFBuf 0.256 0.248 0.248 0.248
ScatterF 1.242 1.015 0.984 0.691
Total 2.775 2.597 2.096 1.800

TABLE IV. Test molecular systems for density fitting.

Atoms Occupied Basis Aux. Basis
Orbitals Functions Functions

Alkane-62 (C20H42) 62 81 510 1950
Alkane-122 (C40H82) 122 161 1010 3870
Alkane-182 (C60H122) 182 241 1510 5790
Alkane-242 (C80H162) 242 321 2010 7710
Alkane-302 (C100H202) 302 401 2510 9630
Alkane-362 (C120H242) 362 481 3010 11550
Graphene-72 (C54H18) 72 171 900 3834
Graphene-120 (C96H24) 120 300 1464 6696
Graphene-180 (C150H30) 180 465 2400 10350
Graphene-252 (C216H36) 252 666 3420 14796
Graphene-336 (C294H42) 336 903 4620 20034
1hsg-30 (C44H62N7O11) 124 232 1240 5022
1hsg-32 (C52H78N10O16) 156 295 1560 6318
1hsg-35 (C69H113N17O22) 221 412 2185 8823
1hsg-38 (C117H208N31O33) 389 696 3755 15006

old of σ = 10−12 in (6).

Table V shows timings for Fock matrix construction, with and without exploiting symme-

try in J and K. Timings for the direct approach are also shown, for comparison. The table

includes the one-time density fitting costs: (a) computing three-index integrals (“(pq|P )

Build”), (b) evaluating and computing the inverse square root of the Coulomb fitting metric

(“[J−1/2] Build”), and (c) forming BQ
pq using Equation (1) (“BQ

pq Build”). We note that

evaluating [J−1/2] is not fully parallelized for running on multiple nodes, so its performance

could be further optimized. The table also shows the memory usage of GTFock density
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fitting, which includes storing shell pair data used in Simint, storing BQ
pq, and temporary

buffers needed for holding V Q and WQ
pi when building the Fock matrix. Density fitting

consumes much more memory compared to the direct approach.

The timing results show the significant advantages of the density fitting approach for small

chemical systems, compared to the direct approach. As system size increases, the direct

approach eventually becomes faster due to increased numerical sparsity in the ERI tensor.

The results also show that the one-time costs of density fitting are significant compared to the

cost of forming the Fock matrix. We note that Simint is particularly efficient in calculating

the three-index integrals (pq|P ) since more of the calculation is efficiently vectorized than

calculating the four-index ERIs13.

We also collected timings for density fitting for these systems using the Psi4 package,

which also exploits sparsity in the 3-index tensors and can be configured to use Simint. For

the case of a single compute node (Psi4 does not have distributed memory density fitting)

the timings are very similar to the GTFock density fitting timings when symmetry is not

exploited (results not shown). This is expected as both codes are performing the same

calculations in very similar ways. GTFock is faster when symmetry in J and particularly K

are exploited.

Table VI, for density fitting, shows the cost of Schwarz screening overhead (computing

the Schwarz bounds for (6)) and the cost of Fock matrix construction with and without

screening. The results show that Schwarz screening has very small overhead compared

to Fock matrix construction cost. Meanwhile, applying Schwarz screening greatly reduces

the cost of evaluating (2), (3), and (4) in Fock matrix construction. The speedup due to

screening is larger for larger molecules.

Figure 2 plots the speedup of Fock matrix construction using density fitting (utilizing

the symmetry of J and K) compared to direct calculation. Density fitting is faster than

direct calculation for small systems as opposed to large systems, and it is interesting to know

where the cross-over occurs. The improved speed of the direct approach using the techniques

demonstrated in this paper can make the direct approach competitive with density fitting

even for systems as small as 300-400 atoms.
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TABLE V. Comparison between GTFock’s direct approach and density fitting approach (with

and without utilizing the symmetry of J and K) for Fock matrix construction. Some tests were

performed on multiple compute nodes due to memory requirements.

Nodes GTFock Direct GTFock Density Fitting
Memory Fock Memory (pq|P ) [J−1/2] BQ

pq Fock Build (s)
(MB) Build (s) (MB) Build (s) Build (s) Build (s) w/ sym. w/o sym.

Alkane-62 1 319 0.87 2166 0.25 0.06 0.56 0.076 0.101
Alkane-122 1 741 3.43 11170 0.99 0.22 3.81 0.67 0.90
Alkane-182 1 1438 8.01 30526 1.96 0.56 11.63 2.76 4.64
Alkane-242 2 2409 6.93 68048 3.29 1.30 14.01 4.54 5.42
Alkane-302 8 3643 3.11 161152 5.25 1.65 7.08 2.89 4.34
Alkane-362 8 5161 4.28 253168 7.61 2.63 11.87 5.33 7.20
Graphene-72 1 612 7.20 13582 1.18 0.21 5.22 0.75 0.89
Graphene-120 1 1483 25.75 54070 3.41 0.77 26.37 4.79 6.86
Graphene-180 2 3262 32.05 170560 8.12 2.91 48.54 13.05 18.05
Graphene-252 8 6417 17.91 512464 17.35 5.20 39.45 13.08 17.81
Graphene-336 16 11560 17.28 1312640 32.55 18.49 51.64 20.56 28.80
1hsg-30 1 1012 9.72 24928 1.80 0.41 9.75 1.85 2.37
1hsg-32 1 1522 16.77 45732 2.94 0.69 20.53 4.32 6.13
1hsg-35 2 2802 15.54 110852 5.47 1.58 27.59 7.83 13.54
1hsg-38 8 7816 18.31 562176 19.58 5.50 38.94 16.59 20.28

TABLE VI. Timings (in seconds) of Schwarz screening overhead and density fitting Fock matrix

construction with and without Schwarz screening. The symmetry of J and K are utilized. Some

tests were performed on multiple compute nodes due to memory requirements.

Nodes Screening Fock Build
Overhead w/ screening w/o screeening

Alkane-62 1 0.009 0.076 0.162
Alkane-122 1 0.030 0.67 1.71
Alkane-182 4 0.078 0.76 2.35
Graphene-72 1 0.023 0.75 1.41
Graphene-120 4 0.050 1.42 3.53
1hsg-30 2 0.036 1.85 2.28
1hsg-32 4 0.060 1.26 3.56
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FIG. 2. Fock matrix build speedup of density fitting (utilizing the symmetry of J and K) over the

direct approach in GTFock (cc-pVDZ/cc-pVDZ-RI basis sets).

REFERENCES

1V. R. Saunders and M. F. Guest, “Applications of the CRAY-1 for quantum chemistry

calculations,” Computer Physics Communications 26, 389 – 395 (1982).

2P. M. W. Gill, M. Head-Gordon, and J. A. Pople, “Efficient computation of two-electron-

repulsion integrals and their nth-order derivatives using contracted Gaussian basis sets,”

The Journal of Physical Chemistry 94, 5564–5572 (1990).

3K. Wolinski, R. Haacke, J. F. Hinton, and P. Pulay, “Methods for parallel computation

of SCF NMR chemical shifts by GIAO method: Efficient integral calculation, multi-Fock

algorithm, and pseudodiagonalization,” Journal of Computational Chemistry 18, 816–825

(1997).

4K. Yasuda, “Two-electron integral evaluation on the graphics processor unit,” Journal of

Computational Chemistry 29, 334–342 (2008).

5I. S. Ufimtsev and T. J. Martinez, “Quantum chemistry on graphical processing units. 1.

Strategies for two-electron integral evaluation,” Journal of Chemical Theory and Compu-

tation 4, 222–231 (2008).

6A. Asadchev, V. Allada, J. Felder, B. M. Bode, M. S. Gordon, and T. L. Windus, “Un-

contracted Rys quadrature implementation of up to g functions on graphical processing

units,” Journal of Chemical Theory and Computation 6, 696–704 (2010).

29



7N. Luehr, I. S. Ufimtsev, and T. J. Martinez, “Dynamic precision for electron repulsion

integral evaluation on graphical processing units (GPUs),” Journal of Chemical Theory

and Computation 7, 949–954 (2011).

8K. A. Wilkinson, P. Sherwood, M. F. Guest, and K. J. Naidoo, “Acceleration of the

GAMESS-UK electronic structure package on graphical processing units,” Journal of Com-

putational Chemistry 32, 2313–2318 (2011).

9Y. Miao and K. M. Merz, “Acceleration of electron repulsion integral evaluation on graph-

ics processing units via use of recurrence relations,” Journal of Chemical Theory and

Computation 9, 965–976 (2013).

10E. F. Valeev, “A library for the evaluation of molecular integrals of many-body operators

over Gaussian functions,” http://libint.valeyev.net/ (2014).

11Q. Sun, “Libcint: An efficient general integral library for Gaussian basis functions,” Journal

of Computational Chemistry 36, 1664–1671 (2015).

12J. Zhang, “libreta: Computerized optimization and code synthesis for electron repulsion

integral evaluation,” Journal of Chemical Theory and Computation 14, 572–587 (2018).

13B. P. Pritchard and E. Chow, “Horizontal vectorization of electron repulsion integrals,”

Journal of Computational Chemistry 37, 2537–2546 (2016).

14H. Huang and E. Chow, “Accelerating quantum chemistry with vectorized and batched

integrals,” in SC 18’: Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis (Dallas, Texas, 2018).

15V. Mironov, Y. Alexeev, K. Keipert, M. D’mello, A. Moskovsky, and M. S. Gordon, “An

efficient MPI/OpenMP parallelization of the Hartree-Fock method for the second genera-

tion of Intel Xeon Phi processor,” in SC 17’: Proceedings of the International Conference

for High Performance Computing, Networking, Storage and Analysis (Denver, Colorado,

2017).

16I. T. Foster, J. L. Tilson, A. F. Wagner, R. L. Shepard, R. J. Harrison, R. A. Kendall,

and R. J. Littlefield, “Toward high-performance computational chemistry: I. Scalable Fock

matrix construction algorithms,” Journal of Computational Chemistry 17, 109–123 (1996).

17R. J. Harrison, M. F. Guest, R. A. Kendall, D. E. Bernholdt, A. T. Wong, M. Stave, J. L.

Anchell, A. C. Hess, R. J. Littlefield, G. L. Fann, J. Nieplocha, G. S. Thomas, D. Elwood,

J. L. Tilson, R. L. Shepard, A. F. Wagner, I. T. Foster, E. Lusk, and R. Stevens, “Toward

high-performance computational chemistry: II. A scalable self-consistent field program,”

30



Journal of Computational Chemistry 17, 124–132 (1996).

18T. R. Furlani, J. Kong, and P. M. W. Gill, “Parallelization of SCF calculations within

Q-Chem,” Computer Physics Communications 128, 170–177 (2000).

19Y. Alexeev, R. A. Kendall, and M. S. Gordon, “The distributed data SCF,” Computer

Physics Communications 143, 69–82 (2002).

20J. Baker, K. Wolinski, M. Malagoli, D. Kinghorn, P. Wolinski, G. Magyarfalvi, S. Saebo,

T. Janowski, and P. Pulay, “Quantum chemistry in parallel with PQS,” Journal of Com-

putational Chemistry 30, 317–335 (2009).

21K. Ishimura, K. Kuramoto, Y. Ikuta, and S.-a. Hyodo, “MPI/OpenMP hybrid parallel

algorithm for Hartree–Fock calculations,” Journal of Chemical Theory and Computation

6, 1075–1080 (2010).

22M. Valiev, E. Bylaska, N. Govind, K. Kowalski, T. Straatsma, H. Van Dam, D. Wang,
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