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SUMMARY

Matrix computation is a critical part of scientific simulations and data analysis in fields

such as density functional theory, recommendation systems, and neural networks. With

the exponential growth in dataset sizes and computational problems, it is imperative to de-

velop scalable parallel algorithms for efficient dense and sparse matrix operations. This

dissertation presents innovative scale-out algorithms that leverage multiple processors to

simultaneously and addressing data movement bottlenecks, and scale-up algorithms fo-

cus on single-node performance by exploiting matrix properties like sparsity and low-rank

structures.

In this dissertation, we first propose the communication-avoiding 3D matrix multiplica-

tion algorithm (CA3DMM). CA3DMM is an approach to parallelize general dense matrix

multiplication that minimizes communication sizes by optimizing matrix partitioning and

data transfer patterns. CA3DMM achieves the theoretical communication cost lower bound

with a simple formation and shows superior parallel performance compared to existing

methods.

We then propose a hybrid approach for efficient distributed-memory polar decomposi-

tion (PD) calculation, which can be used for computing eigenvalue decomposition and sin-

gular value decomposition. The proposed hybrid PD approach combines multiple iterative

methods for computing PD and utilizes CA3DMM and a new parallel orthonormalization

algorithm for better performance.

For large sparse matrices, we propose the communication-reduced parallel sparse-dense

matrix multiplication (CRP-SpMM) algorithm. This algorithm can benefit from existing

sparse matrix partitioning methods for sparse matrix-dense vector multiplication (SpMV),

and further explores more effective 2D process grid sizes to reduce communication costs

by parallelizing the computation of different columns of the dense input matrix. The paral-

lel implementation of CRP-SpMM significantly outperforms existing distributed-memory
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parallel SpMM codes.

Lastly, we present the design and parallel implementation of H2Pack, a high-performance

multi-purpose library for kernel matrices. Combining multiple state-of-the-art mathemati-

cal methods, H2Pack can compress kernel matrices using the H2 matrix format, resulting

in O(N) storage and matrix-vector multiplication costs. As a result, H2Pack can easily and

efficiently handle million-by-million kernel matrices on personal computers, while outper-

forming the widely used fast multipole method (FMM) on multiple tasks.
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CHAPTER 1

INTRODUCTION

1.1 Overview and Motivation

Dense and sparse matrix operations appear in many computations, ranging from traditional

scientific simulations to ever-evolving social network recommendations. With the rapid in-

crease in problem and dataset sizes comes much larger matrices. For example, in real-space

methods for density functional theory calculation and non-negative matrix factorization for

recommendation systems, matrices can have millions or even tens of millions of rows and

columns. These large matrices and their associated operations need to be handled by scal-

able parallel algorithms.

We consider two classes of scalability: scale-out and scale-up. Scale-out means an

algorithm can be accelerated by leveraging multiple processor cores in a chip and pro-

cessor chips to perform simultaneous operations. This allows programs to handle larger

datasets without significantly increasing execution time as more processors are utilized.

The major challenge of designing scale-out parallel algorithms is optimizing data access

to mitigate the “access wall”, since transferring data between processor cache and system

memory and between computing nodes instead of performing arithmetic operations has be-

come the bottleneck of parallel algorithms on modern high-performance computing (HPC)

systems. Previous studies have established the theoretical lower bounds of data movement

(communication) costs for parallelizing major linear algebra operations, including matrix

multiplication, LU and Cholesky factorization, and QR decomposition. However, the gap

between theory and practical implementation remains, necessitating further endeavors in

algorithm design and performance optimization.

The ability to scale-up means an algorithm can exploit special properties of problems to
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reduce computational complexity and resource usage, thus accelerate the execution and/or

handle larger problems using the same computational resources. For matrix computations,

sparsity, symmetry, and low-rank structures are commonly used properties. Some of these

properties may also been used to scale-out the algorithm. Taking advantage of these prop-

erties comes at additional costs: the algorithm becomes more complicated, and the com-

putation becomes irregular. The same parallel algorithm might have good performance for

some sparse matrices but have poor performance if the locations of the non-zeros in the

sparse matrices are changed. As a result, designing and implementing high-performance

parallel algorithms for using special properties of matrices can be much harder than design-

ing and implementing high-performance parallel algorithms for dense general matrices.

In this dissertation, we focus on designing and implementing parallel algorithms for

matrix multiplication, which is the primary operation in matrix computations. Formally,

we consider

C = A×B, A ∈ Rm×k, B ∈ Rk×n, C ∈ Rm×n, (1.1)

where A is a general dense matrix (GEMM calculation), a general sparse matrix (SpMM

calculation), or a structured dense matrix; B and C are general dense matrices. For GEMM

and SpMM calculations, we focus on the design of distributed-memory parallel algorithms

that minimize inter-processor data transfer costs. Additionally, we demonstrate the applica-

tion of our new parallel GEMM algorithm in a new parallel polar decomposition algorithm.

Furthermore, for dense rank-structured kernel matrices, we investigate the design and im-

plementation of shared-memory parallel implementations for compressing such matrices

using the H2 format and multiplying an H2 matrix with a dense matrix or vector.

1.2 Outline and Contributions

In Chapter 2, we propose the Communication-Avoiding 3D Matrix Multiplication (CA3DMM)

algorithm, a novel parallel GEMM algorithm that achieves the communication cost lower
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bound with a simple but efficient approach. Based on a unified view of parallel matrix mul-

tiplication, CA3DMM allows for computing an optimal or near-optimal process grid based

on the dimensions of input matrices and can be reduced to existing algorithms if necessary.

Then, CA3DMM performs the original GEMM calculation using multiple low-rank up-

dates. The computations of different low-rank updates are parallelized, and each low-rank

update is computed using existing parallel GEMM algorithms. Compared to other state-

of-the-art parallel GEMM implementations, CA3DMM is much easier to understand and

implement, with similar or even better performance for a wide range of matrix dimensions

and the number of processes.

In Chapter 3, we present multiple hybrid approaches for scaling up polar decomposition

calculations on large parallel computers. Polar decomposition (PD) is closely related to the

matrix sign function and has recently been used for developing new parallel eigenvalue

decomposition and singular value decomposition algorithms. We analyze the convergence

properties of different iterative methods for PD and the parallel scalability of different basic

linear algebra operations used in these iterative methods, including matrix multiplication,

matrix inversion, and column orthonormalization. By introducing CA3DMM for parallel

GEMM and a new parallel algorithm for column orthonormalization, we propose multiple

hybrid PD (HPD) approaches that combines existing iterative methods. Experiment results

show that HPD approaches exhibit better parallel performance and scalability than existing

ScaLAPACK-based parallel PD implementations.

In Chapter 4, we analyze the vast design space of parallel SpMM algorithms and intro-

duce the Communication-Reduced Parallel SpMM (CRP-SpMM) algorithm for optimizing

process grid size and reducing communication costs. Existing distributed-memory parallel

SpMM algorithms either parallelize SpMM computation only by partitioning the sparse

matrix or use parallel algorithms designed for GEMM without considering sparsity. We

first discuss different parallelization schemes for SpMM and formulate communication

cost models for these schemes. Guided by the cost models, we propose CRP-SpMM to
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optimize the process grid geometry. CRP-SpMM starts with any given 1D row partitioning

and explores more effective 2D process grid sizes to reduce communication costs by paral-

lelizing the computation of different columns of the dense input matrix B. This approach

allows our algorithm to benefit from existing research on partitioning sparse matrices. Ex-

perimental results show that CRP-SpMM can find better process grids that reduce the total

communication size even when high-quality 1D row partitionings are used as baselines.

Additionally, the parallel implementation of CRP-SpMM significantly outperforms exist-

ing distributed-memory parallel SpMM codes.

In Chapter 5, we present the design and parallel implementation of H2Pack, a high-

performance multi-purpose library for kernel matrices defined by translationally invariant

kernels and low-dimensional (2D/3D) problems. Previous studies have proposed various

algorithms for efficiently constructing and using rank-structured matrix representations.

However, existing rank-structured matrix packages are either designed for solving prob-

lems in a specific domain or lack a high-performance implementation of new algorithms.

H2Pack incorporates multiple new mathematical methods to significantly reduce the num-

ber of arithmetic operations needed for compressing a dense kernel matrix into an H2

matrix. We introduce multiple optimization techniques for efficient H2 matrix construction

and multiplication of an H2 matrix with a dense vector or matrix (H2-matvec), including

the use of a dynamic task scheduler for computational tasks with dependencies and two

flexible programming interfaces for H2-matvec. With its highly optimized algorithms and

codes, H2Pack incurs linear storage and computation costs relative to dataset size, mak-

ing it well-suited for large-scale data-driven calculations. Compared to the fast multiple

method (FMM) and other domain-specific libraries, H2Pack can handle a broader range of

matrix classes and achieve performance improvements of up to an order of magnitude.
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CHAPTER 2

CA3DMM: A NEW ALGORITHM BASED ON A UNIFIED VIEW OF PARALLEL

MATRIX MULTIPLICATION

2.1 Introduction

Matrix-matrix multiplication (MM) is one of the most fundamental computational kernels

in scientific computing. It is used in linear algebra algorithms [1, 2, 3, 4], graph process-

ing [5, 6], computational chemistry [7, 8, 9, 10], and other domains. Accelerating matrix

multiplication routines is of great importance and is widely studied.

The calculations in matrix multiplication have plenty of parallelism and highlight the

importance of efficiently using parallel resources (processors, memory, and network) for

obtaining high-performance. On distributed-memory platforms, the cost of transferring

data between processing units (communication) has for a long time become relatively more

expensive than arithmetic operations (computation). Therefore, minimizing communica-

tion costs in distributed-memory parallel algorithms is in the spotlight. In this work, we

focus on minimizing communication costs for distributed-memory parallel dense general

matrix-matrix multiplication (PGEMM).

Many algorithms have been proposed for reducing the data transfer size in PGEMM.

The PGEMM communication cost lower bound has been discussed in multiple works [11,

12, 13, 14]. The widely used SUMMA algorithm [15] achieves optimal communication

complexity for certain matrix dimensions or if no extra memory is present. With extra

memory, 3D [16] and 2.5D [17] algorithms can achieve the communication cost lower-

bound for matrix dimensions m, n, and k (see (Equation 1.1)) in certain ranges [18, 19].

The CARMA algorithm [18] was the first to generalize 1D, 2D, and 3D algorithms (the def-

initions of 1D, 2D, and 3D will be discussed in Section 2.2 soon) with recursive dimension-
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splitting to achieve an asymptotic communication lower bound for any matrix dimensions.

The COSMA algorithm [19] adopted a new approach for finding a communication-optimal

PGEMM parallelization scheme. COSMA achieves the communication cost lower bound

(not just asymptotically) for any matrix dimensions and any number of processes.

Unfortunately, state-of-the-art PGEMM algorithms still have their obvious limitations.

SUMMA is easy to understand and is widely used in linear algebra libraries, but it can-

not utilize extra memory to reduce communication costs. CARMA requires the num-

ber of processes to be a power of two and requires special matrix distributions for its

distributed-memory version. Such limitations make it extremely hard to use CARMA in

real-world applications. As for COSMA, only its high-level principles and ideas are de-

scribed in the literature, and implementing these ideas is complicated.

The comparison between CARMA and COSMA in [19] also indicates an important

issue. When then number of processes is a power of two, CARMA and COSMA use the

same 3D process grid and therefore have the same theoretical communication cost for many

matrix dimensions and numbers of processes, but COSMA usually performs better than

CARMA. Having the optimal process grid and reaching the theoretical communication cost

lower bound are necessary but not sufficient conditions for achieving the best performance.

Matrix partitioning and the resulting communication patterns have very large impacts on

the performance of PGEMM. They should be analyzed and designed carefully to achieve

high performance.

In this work, we present the Communication-Avoiding 3D Matrix Multiplication (CA3DMM)

algorithm, a novel PGEMM algorithm that achieves the communication cost lower bound

with a simple but efficient approach. CA3DMM first computes an optimal or near-optimal

3D process grid based on the dimensions of the input matrices. Then CA3DMM performs

the matrix multiplication using multiple low-rank updates. Both the calculations in each

low-rank update and the computations of different low-rank updates are parallelized. In

contrast, SUMMA [15] performs different low-rank updates sequentially, although each
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low-rank update is performed in parallel. CA3DMM is based on a unified view of dis-

tributed matrix multiplication that generalizes 1D, 2D, and 3D algorithms, so CA3DMM

can be reduced to 1D, 2D, or 3D algorithms in different cases. Numerical experiments

show that CA3DMM has good parallel scalability and has similar or better performance

when compared to state-of-the-art PGEMM implementations for a wide range of matrix

dimensions and number of processes.

2.2 Background

Consider the matrix multiplication operation in Equation (1.1) where A, B, and C are all

general dense matrices. The iteration space for (Equation 1.1) can be viewed as an m×k×n

cuboid. The computation on all three dimensions of the cuboid is independent. A parallel

MM algorithm can be categorized into 1D, 2D, or 3D (2.5D) algorithms if it parallelizes

over 1, 2, or 3 dimensions of the iteration space.

1D algorithms partition only the m-dimension, n-dimension, or the k-dimension of

(Equation 1.1). If the m-dimension / n-dimension is partitioned, matrix B / A will be repli-

cated in the algorithm. If the k-dimension is partitioned, a reduction operation is needed to

obtain the final C matrix. Matrix multiplications involving tall-and-skinny matrices usually

use 1D algorithms.

2D algorithms partition A, B, and C matrices in 2D and organize processes in a 2D

grid. The first 2D algorithm was proposed by Cannon [20], which works for square pro-

cess grids. Later, the PUMMA algorithm [21] was developed and supported rectangular

matrices, transposed matrices, non-square 2D process grids, and different matrix distri-

bution layouts. The SUMMA algorithm [15] further reduced communication costs with

communication-computation overlap. SUMMA is the most widely-used (2D) algorithm

and it is implemented in the ScaLAPACK library [22] and the SLATE library [23].

2D algorithms can be viewed as applying a 2D partitioning to the C matrix and comput-

ing each block of the C matrix with only one process. The original 3D algorithm [16] and
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the 2.5D algorithm [17] further extract parallelism from the “k-dimension of computation”

and reduce communication costs. In the original 3D algorithm and the 2.5D algorithm, a

2D partition is still applied to the C matrix, but two or more processes compute the partial

results of the same C matrix block and use reduce-sum to obtain the final result. The orig-

inal 3D algorithm uses a cuboidal process grid and a 3D partitioning of work. It uses more

memory than 2D algorithms since A and B are replicated across the m-dimension and

the n-dimension of the process grid, respectively, and C has multiple partial results across

the k-dimension. Compared to 2D algorithms, the communication cost of the original 3D

algorithm is reduced from O(N2/P 1/2) to O(N2/P 2/3), where N is the (square) matrix

dimension, and P is the number of processes. As a trade-off, the memory requirement of

the original 3D algorithm increases from O(N2/P ) to O(N2/P 2/3). The 2.5D algorithm

bridges the gap between 2D and the original 3D algorithm by introducing a parameter c

to control the number of replicated copies of the input matrices for use in the original 3D

algorithm.

However, the original 3D algorithm and the 2.5D algorithm are not optimal for all

matrix dimensions. Demmel et al. showed that these approaches usually perform poorly

when one of the matrix dimensions is much larger than the other two dimensions [18]. The

authors then proposed CARMA, a recursive algorithm that achieves asymptotic communi-

cation cost lower bounds for all dimension and memory size configurations. In each step,

CARMA bisects the largest dimension of the current problem and assigns each resulting

subproblem to half of the processes. The process is continued recursively until a single pro-

cess is assigned to each subproblem. Each bisection corresponds to a replication of an A or

B matrix block, or an all-reduction of a C matrix block. This recursive bisection approach

requires the number of processes to be a power of two and also requires special matrix

distributions in any MPI implementation. These factors limit the application of CARMA

in practice.

Recently, Kwasniewski et al. proposed COSMA [19], a communication optimal PGEMM
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algorithm for all combinations of parameters. COSMA uses a “bottom-up” approach to

minimize the total number of words transferred during the matrix multiplication. It first

finds an optimal or near-optimal sequential matrix multiplication strategy “by explicitly

modeling data reuse in the red-blue pebble game”. Then, an optimal parallel scheme is

derived from the sequential scheme by solving an optimization problem. COSMA im-

plements its own binary broadcast tree to take advantage of their special data layout and

utilizes one-sided asynchronous communication operations to further reduce its communi-

cation latency.

The 2.5D matrix multiplication algorithm [24], using any number of processes, is im-

plemented in the Cyclops Tensor Framework (CTF) [25] for parallel tensor calculations.

CTF is optimized for distributed-memory dense and sparse tensor operations.

2.3 The CA3DMM Algorithm

In this section, we present the Communication-Avoiding 3D Matrix Multiplication (CA3DMM)

algorithm, a PGEMM algorithm based on a unified view of parallel matrix multiplica-

tion. CA3DMM works for all combinations of matrix dimensions and process numbers.

CA3DMM is designed with a top-down approach, so it is easy to understand and imple-

ment. Meanwhile, CA3DMM achieves optimal or near-optimal communication costs with

the same memory usage as the original 3D algorithm.

2.3.1 A Unified View of MM and the Minimal Communication Parallelization

In this work, we do not consider possible special properties (for example, symmetry) of

A, B, and C matrices. We only discuss real matrices here for convenience, and the con-

clusions can be applied to complex matrix multiplication. We do not discuss fast matrix

multiplication algorithms, for example, the Strassen algorithm [26].

The number of arithmetic operations (scalar additions and multiplications) and the num-

ber of matrix elements to be loaded and updated correspond to the volume and surface area
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of an m × k × n cuboid, respectively. On the cuboid, we call an m × k face an “A-face”,

a k × n face a “B-face”, and an m × n face a “C-face”. A subdomain (cuboid block)

of the cuboid corresponds to a sub-task in 3D matrix multiplication. The projections of a

subdomain on the A-face, B-face, and C-face correspond, respectively, to the A and B ma-

trix blocks required for computing a C matrix block. Figure 2.1 illustrates the connection

between matrix multiplication and a cuboid.
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Figure 2.1: Illustration of the connection between matrix multiplication and a cuboid. A
unit volume in the cuboid corresponds to one scalar multiplication and addition. The sur-
face area of a cuboid subdomain corresponds to the number of A and B matrix elements to
be loaded and the number of C matrix elements to be updated.

Based on the cuboid view of MM, the parallelization of an MM is equivalent to par-

titioning the cuboid into multiple subdomains and assigning subdomains to processes. To

balance the flops across processes, the total volume of the subdomains on each process

should be mnk/P . The total number of matrix elements to be transferred (read and up-

dated) by all processes equals half of the sum of all subdomains’ surface area minus the
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area of A, B, and C. We ignore the subtracted term in our analysis since it is a constant.

We assume that A and B are distributed on all P processes at the beginning, and C is dis-

tributed on all P processes at the end. In other words, all P processes together have only

one copy of A and B at the beginning, and only one copy of C at the end. This assumption

holds for all existing 2D, 2.5D, and 3D algorithms.

Denote the size of a 3D process grid as pm × pk × pn, where positive integers pm, pk,

pn denote the number of processes along the m-dimension, k-dimension, and n-dimension,

respectively. We further assume each process has only one subdomain. Having two or

more subdomains on each process with the same total volume will have a larger total sur-

face area. The size of the subdomains along the m-dimension will be either ⌈m/pm⌉ or

⌊m/pm⌋, and similarly for the n-dimension and k-dimension. To minimize the total num-

ber of transferred matrix elements, we need to minimize the total surface area of all the

subdomains. Among cuboids that have the same volume, the perfect cube has the smallest

surface area. Since the total volume of each subdomain is fixed as mnk/P , we want to

make the shape of each subdomain as close to a cube as possible. Denote dm = m/pm,

dk = k/pk, dn = n/pn. For convenience of analysis, we assume dm, dk, and dn are integers.

When

dm = dk = dn =

(
mnk

P

)1/3

, (2.1)

a subdomain has the minimal surface area 6(mnk)2/3P−2/3, and the sum of all subdomains’

surface area is

Stotal = 6(mnk)2/3P 1/3. (2.2)

In practice, one can enumerate all possible process grid sizes pm × pk × pn and find the

optimal solution that minimizes the sum of all subdomains’ surface area. Combined with

the complexity analysis in Section 2.3.4, (Equation 2.2) matches the I/O complexity lower

bound in [11].

For some values of P , for example, prime numbers, it is impossible to find a good 2D
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or 3D process grid size that achieves near-optimal communication cost. Previous studies

have shown that the performance of PGEMM is bound by communication when scaling to

a large number of processes, even if communication-optimal algorithms are used. Thus,

a PGEMM algorithm can allow some processes to be idle in matrix multiplication, mak-

ing the communication cost close to optimal with a small extra computation cost. This

technique was recently used in the COSMA algorithm [19].

2.3.2 The CA3DMM Algorithm: Communication Patterns and Matrix Partitionings

The CA3DMM algorithm is based on the aforementioned unified view of matrix multiplica-

tion and 3D process grid selection. In CA3DMM, we enumerate all possible pm × pk × pk

combinations and find a solution that minimizes

Stotal = 2(pmkn+ pnmk + pkmn) (2.3)

with constraint

l · P ≤ pm × pk × pn ≤ P, (2.4)

where l = 0.95 is a tunable parameter. Using a larger l allows fewer processes to be idle

but also makes it harder to find a valid solution under the constraint. A sub-target

max pm × pk × pn (2.5)

is also used to maximize the utilization of processes but its priority is lower than that of

(Equation 2.3).

Having an optimal or near-optimal 3D process grid is just half of building the CA3DMM

algorithm. Different communication patterns can be used for the same process grid, and

their communication costs can be very different. We interpret the 3D process grid with
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a unified view of parallel matrix multiplication: a matrix multiplication is pk indepen-

dent rank-(k/pk) updates to a zero matrix. More precisely, each set of pm × pn processes

forms a k-task group and computes a rank-(k/pk) update using a 2D algorithm. Then, all

k-task groups reduce-sum pk rank-(k/pk) updates to obtain the final C matrix. This view

of parallel matrix multiplication is a unified view since it can fall back to optimal 2D or

1D algorithms if necessary. Even for degenerate problems, for example, rank-1 update

(k = 1), matrix-vector product (n = 1 or m = 1), and vector inner product (m = n = 1),

the obtained algorithms are the same as the optimal algorithms.

We use Cannon’s algorithm [20] in CA3DMM to compute rank-(k/pk) updates. Sec-

tion 2.3.5 further discusses the choice of the 2D algorithm. The original Cannon’s algo-

rithm only works with a square process grid, so it is usually not possible to directly use the

original Cannon’s algorithm in a k-task group. The generalized Cannon’s algorithm [27]

(GCA) is a possible solution. However, GCA is designed for block-cyclic distributed ma-

trices and it also has some restrictions on the matrix dimensions. Instead of using GCA, we

add an intermediate layer between the k-task group and the original Cannon’s algorithm by

allowing CA3DMM to use a sub-optimal 3D process grid. We add a constraint to the 3D

grid size:

mod(max(pm, pn), min(pm, pn)) = 0. (2.6)

Each k-task group is further split into

c = max(pm, pn)/min(pm, pn) (2.7)

Cannon groups with s2 processes in each Cannon group, s = min(pm, pn). A block of A

or B is replicated c times across Cannon groups in a k-task group. If c = 1, the initial

distributions of A and B in each k-task group are the distributions of the original Cannon’s

algorithm. If c > 1 and A / B need to be replicated, each A / B matrix block in the

original Cannon’s algorithm initial distribution for c2 processes is further row-partitioned
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or column-partitioned into c sub-blocks. Each process in a k-task group stores a sub-block

of A / B and a block of A / B initially. Then A / B is replicated by using an allgather

operation before performing Cannon’s algorithm. This scheme guarantees that A and B

are 2D partitioned among all P processes initially. It also balances the memory usage for

storing the initial A and B. In Cannon’s algorithm, each process first sends its A and B

blocks to two processes in the same process row and column (the “initial skewing”). In

the first s − 1 steps, each process circularly shifts its current A and B blocks to its left

and upper neighbor processes, respectively. Therefore, Cannon’s algorithm only requires

neighbor communications with fixed patterns.

The reduce-sum of pk rank-(k/pk) updates is simple and independent of the choice of

2D algorithm. All pk processes having the partial results of the same C block reduce-scatter

sum (equivalent to first reduce-summing the message, then scattering the results) their par-

tial results and the final C block is row-partitioned or column-partitioned into pk sub-blocks.

This scheme also guarantees the final C matrix is 2D partitioned among all pm × pk × pn

active processes.

We provide three simple examples to help the reader understand the initial and final

partitioning of matrices in CA3DMM. We use MATLAB colon notation to indicate matrix

blocks in the examples.
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Figure 2.2: CA3DMM initial and final matrix partitioning examples.
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Example 1. m = 32, k = 16, n = 64, P = 8. The optimal process grid is pm = 2,

pk = 1, pn = 4. Since pk = 1, CA3DMM falls back to 2D Cannon’s algorithm. Since

c = pn/pm = 2, matrix A needs to be replicated. Block A(1 : 16, 1 : 16) is replicated

across processes P1 and P5, initially P1 has A(1 : 16, 1 : 8) and P5 has A(1 : 16, 9 : 16).

Similarly, block A(17 : 32, 1 : 16) is replicated across P2 and P6, initially P2 has A(17 :

32, 1 : 8) and P6 has A(17 : 32, 9 : 16). Figure 2.2a shows the complete partitionings.

Example 2. m = n = 32, k = 64, P = 16. The optimal process grid is pm = pn = 2,

pk = 4. Processes P1≤i≤4 form the first k-task group and compute A(:, 1 : 16)×B(1 : 16, :),

processes P5≤i≤8 form the second k-task group and compute A(:, 17 : 32)× B(17 : 32, :),

and so on. Processes P1, P5, P9, P13 have partial results of C(1 : 16, 1 : 16). After reduce-

scatter, P1 has the final C(1 : 16, 1 : 4), P5 has the final C(1 : 16, 5 : 8), P9 has the final

C(1 : 16, 9 : 12), and P13 has the final C(1 : 16, 13 : 16). Figure 2.2b shows the complete

partitionings.

Example 3. m = n = 32, k = 64, P = 17. The optimal process grid is pm = pn = 2,

pk = 4. Processes P17 only participates in matrix redistribution. Processes P1≤i≤16 have

the same roles as in Example 2.

The initial and final distributions of A, B, and C matrices in CA3DMM are 2D dis-

tributions, but these distributions are usually unable to map to a natural row-major or

column-major 2D process grid. In any case, the applications using CA3DMM may have

different matrix distributions, so the matrices need to be redistributed before and after call-

ing CA3DMM. Such matrix layout conversions are common in 3D and 2.5D algorithms.

The original 3D algorithm and the 2.5D algorithm use natural 2D distributions of A, B, and

C. However, the matrices are only stored on a subset of processes. CARMA and COSMA

also have algorithm-specific initial and final matrix distributions. COSMA supports user-

defined input and output matrix partitionings and the 2D block-cyclic partitioning used in

ScaLAPACK with an internal matrix redistribution library. CA3DMM also adopts a small

subroutine to redistribute the input A and B matrices from user-defined distributions to
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CA3DMM initial distributions and to redistribute the final C matrix to the user-defined

distribution. Further, CA3DMM utilizes the redistribution steps of A and B for computing

C = op(A)× op(B), op() = transpose or no-transpose.

We note that distributed matrix layout conversion and handling the transpose operation in

PGEMM are not the major concerns in this work, so the matrix redistribution subroutine in

CA3DMM is not fully optimized. We leave this as a topic for future study.

Algorithm 1 shows the complete CA3DMM algorithm. For simplicity, CA3DMM or-

ganizes the pm × pn × pk 3D process grid in a “column-major” way, i.e., all MPI processes

in the same k-task group and the same Cannon group have contiguous MPI ranks. We note

that Figure 2.2 shows the partitionings of A and B matrices after the redistribution (step 2

in Algorithm 1) and the partitioning of C before the redistribution (step 8 in Algorithm 1).

Algorithm 1 CA3DMM algorithm
Input: 1D or 2D partitioned A and B matrices distributed on P processes
Output: 2D partitioned C = op(A)× op(B) distributed on P processes

1: Find 3D process grid pm × pk × pn by minimizing (Equation 2.3) and maximizing
(Equation 2.5) with constraints (Equation 2.4) and (Equation 2.6).

2: Organize the first pm × pk × pn processes as pk k-task group(s), each active process
computes its required initial block of A and B matrices and the final C matrix block.
The last P − pm × pk × pn process(es) remain idle outside the redistribution steps.

3: Each k-task group organizes its pm × pn processes as c = max(pm, pn)/min(pm, pn)
Cannon group(s).

4: All P processes participate in the redistribution of A and B matrices.
5: Replicate a block of A or B in each k-task group using allgather if c > 1.
6: Each Cannon group performs Cannon’s algorithm to compute a partial result of a C

block.
7: For each group of pk process(es) holding partial results of the same C block, form the

final C matrix blocks using reduce-scatter if pk > 1.
8: All P processes participate in the redistribution of the C matrix.
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2.3.3 Differences Between COSMA and CA3DMM

Both COSMA and CA3DMM have optimal or near-optimal communication costs for all

matrix dimensions and any number of processes. In many cases, COSMA and CA3DMM

may use the same optimal 3D process grid, but COSMA and CA3DMM organize the

communication and computation in different ways. We discuss the differences between

COSMA and CA3DMM in this section.

To compare COSMA with CA3DMM, we first analyze the actual behaviors of the

COSMA source code since the COSMA paper only discusses the high-level ideas with-

out presenting detailed operations. The actual behaviors in the COSMA source code are

very similar to the CARMA algorithm. In some sense, the COSMA source code can be

considered as a generalized CARMA algorithm implementation.

The COSMA source code first finds an optimal or near-optimal 3D process grid pm × pk × pn

s.t. m/pm ≈ k/pk ≈ n/pn by enumerating all possible solutions. It does not explicitly

solve an optimization problem described in the COSMA paper to find an optimal subdo-

main of size a× b× a, where m/pm = n/pn = a and k/pk = b. Then, the COSMA source

code factorizes pm, pn, and pk to obtain its parallel strategy containing one or multiple

steps. Consider Example 2 in Section 2.3.2. The COSMA source code generates a parallel

strategy with three steps: (1) k-dimension splitting of size 4, (2) m-dimension splitting of

size 2, and (3) n-dimension splitting of size 2. CARMA only bisects the largest dimen-

sion of the current problem and the process group in each step. COSMA generalizes the

bisection and partitions the largest dimension of the current problem into multiple parts.

Correspondingly, COSMA replaces the point-to-point communications in CARMA with

collective operations. Specifically, in each step, if the m / n dimension is partitioned into

s parts, COSMA uses an all-gather operation involving s processes to replicate the B / A

matrix; if the k dimension is partitioned into s parts, COSMA uses a reduce-scatter oper-

ation involving s processes for s partial C matrix results and obtains a final C matrix or

another partial C result.
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In general, COSMA first replicates A and/or B in one or multiple steps using all-gather

operations, then calculates one local matrix multiplication to obtain a partial C result block

on each process, and finally reduces the partial C results to get the final C matrix. The

original 3D algorithm follows the same procedure, but it uses one broadcast operation to

replicate A and one broadcast operation to replicate B. In contrast, CA3DMM does not

complete all replications of A and/or B before local computations. CA3DMM organizes a

parallel matrix multiplication as multiple independent low-rank updates. The communica-

tions and computations in each low-rank update are pipelined and overlapped in Cannon’s

algorithm stage. The partial C result reduction in CA3DMM is the same as that in COSMA.

2.3.4 Complexity Analysis of CA3DMM

In this section, we analyze the communication size, communication latency, and memory

usage of CA3DMM. We assume pm × pk × pn = P , min(pm, pn, pk) > 1, and (Equa-

tion 2.3) equals 1. We further assume butterfly network collectives for communication size

and latency analysis [28], which are optimal or near-optimal in the α− β model. The cost

of collective operations (assuming “large” messages) used in the analysis are listed here,

where n is the message size, P is the number of processes, α is network latency, and β is

the inverse of network bandwidth:

Tallgather(n, P ) = α log2(P ) + βn
P − 1

P
,

Tbroadcast(n, P ) = α (log2(P ) + P − 1) + 2βn
P − 1

P
,

Treduce−scatter(n, P ) = α(P − 1) + βn
P − 1

P
.

We also assume that steps 4 and 8 in Algorithm 1 can be skipped to make our cost analysis

comparable to those in the literature.

We define the communication size Q as the maximum number of matrix elements trans-

ferred by any process in Algorithm 1. Based on (Equation 2.2) and the assumptions in this
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section, we immediately obtain

Q = 3

(
mnk

P

)2/3

. (2.8)

We define the communication latency L as the maximum number of messages sent by

any process in Algorithm 1. Define ps = min(pm, pn). In Algorithm 1, steps 5, 6, and 7

have latency log2(c), ps, and pk − 1, respectively. Thus, the communication latency is

L = log2(c) + ps + pk − 1. (2.9)

Fixing m, n, k and increasing P , (Equation 2.1) shows that the ratios pm/pk, pk/pn, and c

remain unchanged, so ps = uP 1/3 where u is a constant, and thus L = O
(
P 1/3

)
.

We define the memory usage S as the maximum number of matrix elements stored on

any process in Algorithm 1. We first assume m ≤ n. After step 4, each process stores

(mk + kn)/P elements of A and B. After step 5, A is replicated c times, each process

stores (cmk + kn)/P elements of A and B. CA3DMM uses a dual buffer in Cannon’s

algorithm to overlap communication with computation, so each process needs another

(cmk + kn)/P elements for the second buffer of A and B. After Cannon’s algorithm,

each k-task group has a partial result of C, so each process stores kpmn/P elements of the

partial C matrix. After reduce-scatter, each process stores mn/P elements of the final C

matrix in the partial C matrix block buffer. Therefore, the memory usage is

S = 2
cmk + kn

P
+

kpmn

P
. (2.10)

If m = n = k, then c = 1 and

S = 4m2/P +m2/P 2/3 = O(
m2

P 2/3
),
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so S has the same asymptotic complexity as the memory usage of the original 3D algorithm.

For m > n, the analysis is similar, and the conclusion remains unchanged.

2.3.5 Choosing the 2D Algorithm in CA3DMM

The 2D algorithm in CA3DMM determines the initial input matrix distributions and the

communication pattern during the calculation. SUMMA is the conventional choice. It

can handle all 2D process grid sizes, and it is easy to implement. We choose Cannon’s

algorithm since we believe it can outperform SUMMA in CA3DMM for most problem

settings as we explain now. Denote CA3DMM-C and CA3DMM-S as CA3DMM using

Cannon’s algorithm and SUMMA, respectively. Assume CA3DMM-C and CA3DMM-S

use the same process grid and pm ≥ pn. Both approaches have the same communication

size Q. If we use the largest possible panel sizes to reduce the number of communication

operations in SUMMA, we still need pm iterations, and each iteration has a communication

latency

max(log2(pm) + pm − 1, log2(pn) + pn − 1) = log2(pm) + pm − 1

for panel broadcast. The latency of CA3DMM-S is

LSUMMA = pm (log2(pm) + pm − 1) + (pk − 1),

giving

LSUMMA − L = pm (log2(pm) + pm − 1) + (pk − 1)

− (log2(pm/pn) + pn + (pk − 1))

≥ (pm − 1) log2(pm) + p2m − pm − pn

≥ (pm − 1) log2(pm) + p2m − 2pm.
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If pm = pn = 1, no 2D algorithm is needed. If pm ≥ 2, LSUMMA −L ≥ 0. If pm < pn, the

same conclusion holds. The latency of CA3DMM-C is always not larger than the latency

of CA3DMM-S when using the same process grid. On the other hand, CA3DMM-S does

not have the constraint in (Equation 2.6). The optimal grid size for CA3DMM-S may

give a smaller Q and/or a smaller L, but the new values should not be much better than the

optimal or near-optimal Q and L values in CA3DMM-C. Considering the above discussion,

we choose CA3DMM-C instead of CA3DMM-S.

2.3.6 Implementation of CA3DMM

We implement CA3DMM in C + OpenMP + MPI. We enumerate all possible solutions

to find the optimal 3D process grid for CA3DMM. In any practical case, the cost of the

enumeration is less than 1% of the actual parallel matrix multiplication time. The matrix

redistribution subroutine in Algorithm 1 steps 4 and 8 simply packs and unpacks matrix

blocks and exchanges data using MPI Neighbor alltoallv. This subroutine does

not have other optimizations. Algorithm 1 steps 5 and 7 use MPI Allgather(v) and

MPI Reduce scatter. We use a dual-buffer in Cannon’s algorithm to overlap commu-

nication with computation. To maintain the efficiency of local matrix multiplication, we

perform multiple shifts for one local matrix multiplication if A and B blocks in Cannon’s

algorithm do not have a large enough k-dimension size. These two optimizations are com-

mon for Cannon’s algorithm. Local (shared-memory) matrix multiplications are handled

by an OpenMP-parallelized BLAS library. CA3DMM can also run in pure MPI mode by

using only one OpenMP thread per MPI rank.

2.4 Numerical Experiments

All experiments in this section are performed on the Georgia Tech PACE-Phoenix cluster.

Each CPU compute node has two CPU sockets and 192 GB DDR4 memory. Each socket

has an Intel Xeon Gold 6226 12-core processor. Each GPU compute node has the same
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CPU and memory as a CPU compute node but also has two NVIDIA Tesla V100 GPUs.

Each Tesla V100 GPU has 16 GB HBM2 memory. Compute nodes are connected with 100

Gbps InfiniBand networking.

2.4.1 Scalability of Different PGEMM Algorithms
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Figure 2.3: Strong scaling tests of COSMA, CA3DMM, and CTF for different matrix
dimensions. Neither A nor B is transposed. All tested implementations use one core per
MPI process. Minimal, mean (marked line), and maximal achieved percentages of peak
performance in ten runs are shown. “Native layout” and “Custom layout” refer to the
library-native and 1D column partitionings of A, B, and C matrices, respectively.

We test and compare three PGEMM libraries that use 3D or 2.5D algorithms and can

handle any number of processes: COSMA, CTF, and CA3DMM. The three libraries are
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compiled using Intel C/C++ compiler v19.0.5 with optimization flags “-xHost -O3”, and

use Intel MKL v19.0.5 for shared-memory matrix multiplication and MVAPICH2 2.3.2 for

the MPI backend.

We test four classes of problem dimensions: (1) square, m = n = k, (2) large-K,

m = n ≪ k, (3) large-M, m ≫ n = k, and (4) flat, m = n ≫ k. Such types of

calculations are taken from real-world applications. Some examples are the following. The

square class is used in density matrix purification and polar decomposition [8, 29]. The

large-K and large-M classes are used in CholeskyQR and Rayleigh-Ritz projection [9, 30,

31]. The flat class comes from the trailing matrix update in matrix factorization algorithms,

for example, LU, Cholesky, and Householder QR.

Figure 2.3 shows the strong scaling test results for different matrix dimensions. All

three libraries use one CPU core per MPI rank. COSMA uses communication-computation

overlap and can use unlimited extra memory. One-time initialization costs, including find-

ing the optimal 3D process grid in CA3DMM, finding the optimal parallelization strat-

egy in COSMA, initializing MPI communicators, and allocating work buffers, are not

counted. Both “library-native” and 1D column matrix partitionings are tested for COSMA

and CA3DMM. Since the library-native matrix partitionings of COSMA and CA3DMM

are 2D partitions, the 1D column partition aims to show the possible heavy cost of matrix

layout conversion. When using library-native matrix partitions, COSMA and CA3DMM

have good parallel scalability on all problem classes, showing that both algorithms have

optimal or near-optimal communication costs in practice. CTF is not fine tuned for matrix

multiplication, so its parallel efficiency is less satisfying. A previous study suggested that

its process grid and matrix decomposition may be far from optimal [19]. For large-K and

large-M problems, COSMA and CA3DMM have very similar performance. The major

communication cost in both algorithms is C matrix reduction for large-K and B matrix

replication for large-M, so it is reasonable that both algorithms have similar communica-

tion costs. For square and flat problems, CA3DMM outperforms COSMA. The difference
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in process grid size may also have an impact, and we will discuss this in Section 2.4.2.

Figure 2.3b and Figure 2.3c also show the high matrix layout conversion costs in COSMA

and CA3DMM when using unfavorable matrix partitionings for tall-and-skinny matrices.

Adopting library-native matrix partitioning to reduce or avoid matrix layout conversion

cost in other parallel algorithms is a significant issue to address in the future.

Figure 2.4 shows the strong scaling test results for different matrix dimensions and par-

allelization modes. All three libraries use library-native matrix partitionings, and COSMA

still uses communication-computation overlap without a limitation on extra memory. (Equa-

tion 2.2) and (Equation 2.8) show that switching from pure MPI parallel to MPI + OpenMP

hybrid parallel decreases the total number of words transferred between processes but

also increases per-process data transfer size. For the square problem, both COSMA and

CA3DMM have better performance in pure MPI mode than in MPI + OpenMP mode.

Runtime breakdowns show that both libraries have larger communication costs in hybrid

parallel mode. One possible reason is that the pure MPI parallel mode has a smaller inter-

node communication volume. Another possible reason is that communication operations

from different MPI processes in the same node can overlap with each other and better uti-

lize inter-node network bandwidth [32]. For the large-K and large-M problems, COSMA

and CA3DMM run faster using MPI + OpenMP parallelization. In these cases, only one

type of communication operation is performed in a much smaller process group, leading to

a much lower communication cost. For the flat problem, COSMA and CA3DMM also have

better performance in MPI + OpenMP mode due to a smaller communication cost. CTF

has various performance behaviors when using hybrid parallelization, which needs further

study for a better understanding.

We test different l values (processor core utilization ratio) in the range [0.85, 0.99] for

(Equation 2.4). Test results show that using other l values give the same 3D process grid as

using the value l = 0.95 in almost all cases (detailed results omitted).

Table 2.1 shows the memory usage per process (in MB) of COSMA and CA3DMM for

24



Table 2.1: COSMA and CA3DMM memory usage per process (in MB) for different prob-
lem dimensions. COSMA has no limitation on extra memory. Both libraries use library-
native matrix distributions.

Problem Size Number of MPI Processes
m,n, k (×103) 192 384 768 1536 3072

COSMA

50, 50, 50 2086 1242 770 484 292
6, 6, 1200 848 561 424 283 171
1200, 6, 6 848 561 424 283 171

100, 100, 5 993 616 387 293 176

CA3DMM

50, 50, 50 1490 696 398 137 106
6, 6, 1200 1987 1397 497 284 125
1200, 6, 6 1428 851 710 213 102

100, 100, 5 1797 855 433 206 128

different problem dimensions. For the square class problem, CA3DMM always uses less

memory than COSMA. For the other three problem classes, CA3DMM uses more memory

than COSMA when the number of MPI processes is not very large, but the memory usage

of CA3DMM decreases more rapidly than COSMA with the increase of number of MPI

processes. CA3DMM still uses less memory than COSMA when using more than 1536

MPI processes. Since both COSMA and CA3DMM have the same asymptotic maximum

memory usage of O(mnk/P 2/3), CA3DMM should still use less memory than COSMA

when using more than 3072 MPI processes for these four classes of problem dimensions.

We notice that the memory usage in CA3DMM greatly decreases in two cases: (1) large-K

from 384 processes to 768 processes, and (2) large-M from 768 processes to 1536 pro-

cesses. The reason for the large decreases in these cases is the change of process grid size,

with the changes in memory usage matching (Equation 2.10).

2.4.2 Process Grid Dimensions and Performance

In this section, we study the impact of process grid dimensions on the performance of

COSMA and CA3DMM. Table 2.2 shows the COSMA and CA3DMM runtime for vari-

ous problem dimensions with different process grid dimensions. When using 2048 cores,

COSMA chooses its optimal process grid size for each problem dimension and CA3DMM
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Table 2.2: COSMA and CA3DMM runtime (seconds) for different problem dimensions
with process grid dimensions. Reported runtime values are averaged over ten runs. Both
libraries use one CPU core per MPI rank and library-native matrix distributions. Process
grid sizes in italics are not the default optimal grid sizes chosen by the library.

Number of Cores
Problem Size COSMA CA3DMM
m,n, k (×103) pm, pn, pk Runtime (s) pm, pn, pk Runtime (s)

2048

50, 50, 50 8, 16, 16 2.65 8, 16, 16 2.46
6, 6, 1200 2, 2, 512 0.84 2, 2, 512 0.78
1200, 6, 6 512, 2, 2 0.82 512, 2, 2 0.82

100, 100, 5 32, 32, 2 1.03 32, 32, 2 1.02

3072

50, 50, 50 16, 16, 12 2.11 16, 16, 12 1.75
12, 16, 16 1.88

6, 6, 1200 4, 2, 384 0.61 4, 2, 384 0.54
2, 3, 512 0.59 3, 3, 341 0.62

1200, 6, 6 384, 4, 2 0.62 384, 4, 2 0.58
512, 2, 3 0.60

100, 100, 5 32, 32, 3 0.85 32, 32, 3 0.82
32, 48, 2 0.77 39, 39, 2 0.70

uses the same process grid. When using 3072 cores, a near-optimal process grid is specified

for each problem dimension. We also report the performance of both libraries using their

optimal process grids.

The timings in Table 2.2 show two remarkable points. First, the performance of a

PGEMM algorithm relies on both the process grid dimensions and communication patterns

and operations. When using the same (optimal) process grid, COSMA and CA3DMM

have the same theoretical communication size Q, but CA3DMM is up to 21% faster than

COSMA. Considering that COSMA has its optimized collective operation implementation

and CA3DMM uses standard MPI functions, such performance differences can only come

from different communication patterns and operations. Second, sub-optimal process grids

may outperform the optimal grids chosen by theoretical analysis due to the cost of collective

operations. For the large-K problem size, CA3DMM is slower when using the theoretical

optimal process grid pm×pn×pk = 3×3×341 instead of a sub-optimal grid pm×pn×pk =

4 × 2 × 384. The optimal process grid uses 99.9% of the cores, so the computational

resources are well utilized. A runtime breakdown shows that the major difference in timing
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comes from the cost of the reduce-scatter operation. For collective operations, pk = 341 is

unfavorable.

Figure 2.5 further shows the relative runtime breakdowns for 2048-core tests in Ta-

ble 2.2. COSMA and CA3DMM have similar local computation and communication (sum

of “replicate A,B” and “reduce C”) costs in all problem classes. Instead of organizing the

3D process grid in a fixed way like CA3DMM, COSMA “crafts the binary reduction tree in

all three dimensions” of communications and has different 3D process grid organizations

for different problem classes. Therefore, the “reduce C” costs in COSMA are similar to

or smaller than that of CA3DMM in different cases, depending on how close the MPI pro-

cesses that reduce sum the partial C results are placed on the hardware. The same comment

applies to the “replicate A, B” costs.

2.4.3 GPU Performance

Table 2.3: COSMA, CA3DMM, and CTF runtime (seconds) for different problem dimen-
sions on GPUs. Reported runtime values are averaged over ten runs. All libraries use one
GPU per MPI rank and library-native matrix distributions.

Number of GPUs
Problem Size COSMA CA3DMM CTF
m,n, k (×103) pm, pn, pk Runtime (s) pm, pn, pk Runtime (s) Runtime (s)

16

50, 50, 50 2, 2, 4 5.45 2, 2, 4 6.44 15.46
10, 10, 300 1, 1, 16 0.91 1, 1, 16 0.94 4.64
300, 10, 10 16, 1, 1 0.90 16, 1, 1 0.89 13.77
50, 50, 10 4, 4, 1 1.22 4, 4, 1 1.23 11.61

32

50, 50, 50 2, 4, 4 4.70 4, 2, 4 5.39 15.20
10, 10, 300 1, 1, 32 0.70 1, 1, 32 0.78 3.70
300, 10, 10 32, 1, 1 0.64 32, 1, 1 0.65 14.82
50, 50, 10 4, 8, 1 0.82 8, 4, 1 0.84 12.46

We implement a CA3DMM GPU prototype by simply offloading local matrix multipli-

cations from CPUs to GPUs. Table 2.3 compares the GPU performance of COSMA, CTF,

and our CA3DMM GPU prototype. The GPU part of these three libraries are compiled

using CUDA 10.2 and use cuBLAS for local matrix multiplications. The maximum num-

ber of GPUs we can use is 32, so we test the performance using 16 and 32 GPUs. Since

the numbers of MPI processes are powers of two and are small, COSMA and CA3DMM
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have the same or effectively the same 3D process grids in all problem settings. COSMA

outperforms CA3DMM on square and large-K problems where the k-dimension reduction

is needed. On square problems, the partial C result block is larger than a threshold in

MVAPICH2, which degrades the performance of reduce-scatter. In the MPI + OpenMP

tests (Figure 2.4a), CA3DMM also has the same performance issue, but it is less obvi-

ous since the total runtime is larger. The MVAPICH2 user manual does not list a related

runtime environment variable. We leave the optimization of the reduce-scatter step for fu-

ture study. For flat and large-M problems, COSMA and CA3DMM have almost the same

performance. The GPU acceleration of CTF is still in development.

2.5 Conclusions and Open Problems

In this work, we present the CA3DMM algorithm, a simple and scalable parallel dense

general matrix multiplication algorithm based on a unified view of parallel matrix multipli-

cation. The unified view organizes a PGEMM as multiple low-rank updates and parallelizes

both the calculations in each low-rank update and the computations of different low-rank

updates. This unified view generalizes 1D, 2D, and 3D algorithms in an intuitive way,

which allows one to understand and implement it easily. We prove that CA3DMM can

achieve optimal or near-optimal communication cost with extra memory for all matrix di-

mensions and any number of processes. Numerical results show that CA3DMM can scale

to a large number of cores efficiently and the performance of CA3DMM is comparable

or better than state-of-the-art communication-optimal PGEMM codes for a wide range of

problem dimensions and numbers of processes. The theoretical analysis and experimental

data also point to some future study directions for CA3DMM.

The first topic for future study is controlling the usage of extra memory in CA3DMM

while minimizing communication costs. (Equation 2.10) suggests two possible approaches.

The first approach is replacing Cannon’s algorithm with the SUMMA algorithm. The

SUMMA algorithm uses a tunable broadcast block size b. The extra memory required for

28



dual buffering and overlapping communication with computation is O(max(m/pm, n/pn)).

This CA3DMM algorithm would be simpler since neither the A matrix nor the B matrix

would need to be replicated before calling SUMMA. As discussed in Section 2.3.5, the

communication pattern in SUMMA is less preferable than that in Cannon’s algorithm, so

the SUMMA version is very likely to be slower in practice. The second approach is reduc-

ing the number of k-task groups, i.e., reducing the number of partial C matrix results. This

approach makes CA3DMM move toward 2D algorithms and increases the communication

size Q. These two approaches can be applied together to further reduce the usage of extra

memory.

Another open question for CA3DMM is reducing matrix distribution conversion costs

in real-world applications. Indeed, CARMA, COSMA, and CA3DMM all need to address

this issue since they all have library-native matrix partitionings that are not easy to use

directly by higher-level driver algorithms. Real-world applications usually use natural 1D

or 2D partitionings for matrices and process grids, or block-cyclic 2D matrix partitioning

for ScaLAPACK or other distributed-memory linear algebra libraries. Two example driver

algorithms are the Rayleigh-Ritz step in Chebyshev-filtered subspace iteration [9] and the

repeated matrix multiplications in density matrix purification [10]. As Figure 2.3 shows,

the cost of converting a distributed matrix to a library-native distribution could be very

high. Therefore, it is essential to design library-native matrix partitionings or other matrix

partitionings that can help reduce the matrix layout conversion cost.

CA3DMM is released in open-source form at https://github.com/scalable-matrix/CA3DMM

and is being integrated into the distributed-memory large-scale real-space density func-

tional theory (DFT) program SPARC [33]. The need for a high-performance PGEMM

for various matrix dimensions used in SPARC was the original motivation for developing

CA3DMM.
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Figure 2.4: Strong scaling tests of COSMA, CA3DMM, and CTF for different matrix
dimensions and parallelization modes. Neither A nor B is transposed. Solid lines with
circle markers are pure MPI parallel (one core per MPI process, 24 MPI processes per
node) results. Dashed lines with cross markers are MPI + OpenMP parallel (24 cores per
MPI process, one MPI process per node) results. Reported values are averaged over ten
runs. All libraries use their library-native matrix partitionings.
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Figure 2.5: COSMA and CA3DMM relative runtime breakdowns for 2048-core tests in Ta-
ble 2.2. For each class of problems, timings are normalized such that the total runtime of
COSMA equals 1. For CA3DMM, “replicate A, B” includes step 5 in Algorithm 1 and the
cost of shifting A and B blocks in Cannon’s algorithm.
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CHAPTER 3

SCALING UP POLAR DECOMPOSITION ON DISTRIBUTED-MEMORY

COMPUTERS

3.1 Introduction

The polar decomposition (PD) decomposes a matrix A ∈ Cm×n as

A = QH, Q ∈ Cm×n, H ∈ Cn×n,

where Q has orthonormal columns and H is Hermitian positive semi-definite. Polar de-

composition has many applications [3]. In recent years, the use of polar decomposition

to compute eigenvalue decomposition (EVD) and singular value decomposition (SVD) in

parallel [29, 34, 35, 36] has garnered much attention from researchers. In this work, we

focus on scaling up polar decomposition on large distributed-memory computer clusters.

The most straightforward approach to computing a PD is by using the SVD of the target

matrix. Since we are interested in using PD to compute EVD or SVD, computing an SVD

first is counterproductive. Instead, we focus on using iterative methods to compute PDs. A

matrix iteration for PD has the form

Xk+1 = f(Xk), X0 = A, (3.1)

where f is a mapping function, and the output Xs is an approximation to the unitary polar

factor, Q. We note that some matrix iterations require the iterates to be square or invertible.

In this work, we assume A is square and invertible; the general case can be handled by

transforming the original matrix into an invertible one using pivoted QR factorization.

One major attraction of matrix iterations for computing PD is that f(Xk) only re-
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quires elemental matrix operations such as matrix multiplication, matrix inversion, and QR

decomposition. Optimized distributed-memory implementations of these operations are

available on many computing platforms. Recently, many implementations of iterative po-

lar decomposition for distributed-memory platforms and hardware accelerators have been

developed [34, 36, 37, 35]. These implementations are built on top of ScaLAPACK [22],

the most widely used distributed-memory linear algebra library.

However, the rapid development of new high-performance computers brings new chal-

lenges to existing distributed-memory parallel iterative PD implementations. One new

challenge involves the communication complexity of linear algebra algorithms. In the past

decade, the communication cost lower bounds of many linear algebra operations have been

proved, and parallel algorithms that achieve the communication cost lower bounds have

been proposed [38, 13, 17, 39, 18]. Some of these communication-optimal algorithms

require algorithm-specific matrix layouts, but ScaLAPACK requires the 2D block-cyclic

(2DBC) matrix partitioning to balance arithmetic workload and matrix storage. Another

challenge is exploiting hierarchical parallelism. ScaLAPACK was originally designed for

MPI-only parallelization. The 2DBC partitioning may be unfavorable for MPI + OpenMP

and MPI + GPU hybrid parallelization. Using a large block size in 2DBC makes process-

local computation more efficient since more arithmetic operations are needed to saturate

powerful new processors. On the other hand, using a small block size better balances the

workload across MPI processes. In practice, many ScaLAPACK operations have better

performance in pure MPI mode than in MPI + OpenMP mode. The new SLATE library

[23] addresses hierarchical parallelization, but it still uses 2DBC partitioning and does not

provide some communication-optimal algorithms.

In this work, we design multiple new hybrid iterative schemes and adopt new parallel

linear algebra algorithms to scale up PD on distributed-memory cluster computers. The

hybrid iterative schemes combine existing iterative PD methods to trade floating-point op-

erations (flops) for parallel scalability. To better exploit hierarchical parallelism, we design
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and adopt new parallel algorithms that do not use 2DBC for matrix multiplication, ma-

trix inversion, and column orthonormalization. Test results show that our implementations

and the ScaLAPACK-based polar decomposition have a similar runtime on a small num-

ber of nodes, and our implementations outperform the ScaLAPACK-based implementation

by achieving up to 1.8× speedup on 128 nodes, demonstrating the potential of the new

algorithms.

3.2 Iterative Polar Decomposition Methods and Their Matrix Operations

3.2.1 Iterative Polar Decomposition Methods

Four iterative methods for computing polar decomposition relevant to this work are New-

ton [3, 40], Newton-Schulz [3], Halley [41], and Zolotarev’s functions [42] (for conve-

nience, we call this method “ZOLO” in the rest of this Section). The mapping functions of

Newton, Newton-Schulz, and Halley are

Newton : f(X) =
1

2
(X +X−H),

Newton-Schulz : f(X) =
1

2
X(3I −XHX),

Halley : f(X) = X(3I +XHX)(I + 3XHX)−1.

The Zolotarev mapping functions are complicated and we will discuss them later in this

section. Newton and Halley’s methods are globally convergent. Newton-Schulz is conver-

gent when ∥I − A2∥ < 1, so in practical use A is usually first scaled by ρ(A). Indeed,

the spectral information of A is used to accelerate the convergence in the ZOLO method

and the scaled versions of Newton, Newton-Schulz, and Halley. We focus on the scaled

methods and ZOLO in this work.

Several scaling approaches have been proposed for the Newton method. An inexpensive
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approach proposed by Byers and Xu [40] is

Xk+1 =
1

2
(ζkXk + ζ−1

k X−H), X0 = A. (3.2)

ζk is the scaling factor in the k-th iteration:

ζ0 = (ab)−1, ζ1 =

√
2
√
ab/(a+ b), ζk = 1/

√
ρ(ζk−1) for k ≥ 2, (3.3)

where 0 < a ≤ ∥A−1∥−1
2 ≤ ∥A∥2 ≤ b, ρ(x) = (x + x−1)/2. The scaled Newton (SN) in

this work refers to the Newton method with Byers-Xu scaling.

For the Newton-Schulz method, Chen and Chow [43] suggested a stable scaled version

(SSNS):

Xk+1 =
1

2
akXk(3I − a2kX

2
k), X0 = A/α, (3.4)

where α ≥ ∥A∥2, l0 is not larger than the smallest singular value of X0, and

1

2
â(3− â2) = t, (3.5)

ak = min

(√
3

1 + lk + l2k
, â

)
, (3.6)

lk+1 =
1

2
aklk(3− a2kl

2
k), (3.7)

where t = 0.1 is a prescribed parameter necessary for stability.

For the Halley method, Nakatsukasa et al. [41] proposed a scaling

Xk+1 = Xk(akI + bkX
H
k X)(I + ckX

H
k Xk)

−1, X0 = A/α, (3.8)
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where α ≥ ∥A∥2, l0 is not larger than the smallest singular value of X0, and

ak = h(lk), bk = (ak − 1)2/4, ck = ak + bk − 1, (3.9)

lk = lk−1(ak−1 + bk−1l
2
k−1)/(1 + ck−1l

2
k−1), (3.10)

h(l) =
√

1 + γ +
1

2

√
8− 4γ +

8(2− l2)

l2
√
1 + γ

, γ =
3

√
4(1− l2)

l4
. (3.11)

This scaling approach is called dynamically weighted Halley (DWH). In DWH, the map-

ping functions for the singular values are the best type-(3, 2) rational functions R(x) =

xa+bx2

1+cx2 that approximate the scalar sign function. DWH has two mathematically equivalent

versions. The QR-based DWH (QDWH) is a numerically stable version, it reads

Xk+1 =
bk
ck
Xk +

1
√
ck
(ak − bk/ck)Q1Q

H
2 , (3.12)

where √ckXk

I

 =

Q1

Q2

R (3.13)

is a thin QR factorization. The Cholesky-based DWH (CDWH) is a faster but less stable

version, it reads

Zk = I + ckX
H
k Xk, Wk = chol(Zk), (3.14)

Xk+1 =
bk
ck
Xk +

(
ak −

bk
ck

)
(XkW

−1
k )W−H

k , (3.15)

where chol(Zk) is the Cholesky factor of Zk.

The ZOLO method generalizes DWH by using type-(2r + 1, 2r) best rational approx-

imation of the scalar sign function with r ≥ 1 to accelerate the convergence. The scaled
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Zolotarev function reads

Ẑ2r+1(x; l) =
Z2r+1(x; l)

Z2r+1(1; l)
= M̂x

r∏
j=1

x2 + c2j
x2 + x2j−1

, (3.16)

where

l′ =
√
1− l, K ′ =

∫ π/2

0

(
1− (l′)2 sin2 θ

)−0.5
dθ, (3.17)

ci = l2
sn2(u; l′)

cn2(u; l′)
, u =

iK ′

2r + 1
, i = 1, 2, . . . , 2r, (3.18)

M̂ =
r∏

j=1

1 + c2j−1

1 + c2j
, (3.19)

sn2(u; l′) and cn2(u; l′) are the Jacobi elliptic functions. The ZOLO method reads

Xk+1 = M̂

(
Xk +

r∑
j=1

ajXk

(
XH

k Xk + c2j−1I
)−1

)
, (3.20)

where

aj = −

(
r∏

p=1

(c2j−1 − c2p)

)
·

(
r∏

p=1,p ̸=j

(c2j−1 − c2p−1)

)
. (3.21)

Equation (3.20) can be computed using QR decompositions:

 Xk

√
c2j−1I

 =

Qj1

Qj2

Rj, j = 1, 2, . . . , r, (3.22)

Xk+1 = M̂

(
Xk +

r∑
j=1

aj√
c2j−1

Qj1Q
H
j2

)
. (3.23)

In the rest of this work, we call the ZOLO method with type-(2r + 1, 2r) best rational

approximation as ZOLO-r for convenience, for example, ZOLO-4 is the ZOLO method

with r = 4.
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3.2.2 QR Factorization

The QDWH method requires computing a QR factorization. Given A ∈ Rm×n with m ≥ n,

the reduced QR factorization computes A = QR, where Q ∈ Rm×n is a matrix with

orthonormal columns and R ∈ Rn×n is an upper triangular matrix with positive diagonal

elements.

Many algorithms have addressed communication-efficient algorithms for the very tall-

and-skinny case, m ≫ n, of reduced QR factorization. The well-known CholeskyQR

algorithm [1] computes R as the upper triangular Cholesky factor of the n×n Gram matrix

AHA and obtains Q by solving Q = AR−1. CholeskyQR is communication efficient for

very tall-and-skinny matrices. Due to its numerical instability, however, CholeskyQR is

rarely used in practice; the Q matrix computed by CholeskyQR has poor orthogonality

depending on the condition number of A. To address this issue, CholeskyQR2 [44] applies

CholeskyQR again to the Q matrix obtained by CholeskyQR. However, if the condition

number of A is larger than u−1/2, where u is the floating-point unit round-off, loss of

orthogonality may still be an issue. For these cases, shifted CholeskyQR3 [31] can help,

by first running CholeskyQR with a diagonal shift on the Gram matrix and then running

CholeskyQR2. The tall-and-skinny QR (TSQR) [39] is another algorithm designed for

minimizing the communication in QR factorization of tall-and-skinny matrices. It uses

a tree reduction to compute the R matrix recursively. TSQR is unconditionally stable.

Compared to CholeskyQR2, TSQR has fewer messages but requires more flops.

If a matrix is not tall-and-skinny, the canonical approach is the Householder QR algo-

rithm [1], which is implemented in ScaLAPACK [22]. The blocked version of Householder

QR in ScaLAPACK uses the standard Householder QR that builds one reflector vector at a

time for panel factorization. Such vector-wise operations have large communication costs.

The communication-avoiding QR (CAQR) [39] replaces vector-wise reflector construction

in panel factorization with TSQR and modifies the rest of the blocked version of House-

holder QR to work with TSQR’s output. Another communication-avoiding QR algorithm
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is the communication-avoiding CholeskyQR (CA-CQR) [45]. CA-CQR uses a 3D parallel

matrix multiplication algorithm and a 3D parallel Cholesky factorization algorithm to min-

imize communication costs. CA-CQR also needs to be applied two or three times to get

the numerically stable CA-CQR2 and shifted CA-CQR3.

3.2.3 Matrix Multiplication

Parallel GEMM operation is used in all iterative PD methods discussed in Section 3.2.1.

We refer the reader to Section 2.2 for detailed discussions of parallel GEMM algorithms.

3.2.4 Matrix Inversion

The matrix inverse is explicitly used in the Newton method, the original Halley method,

and the scaling versions of these two methods. The canonical approach for finding the in-

verse of A is performing a pivoted LU or Cholesky factorization first, then calculating A−1

using triangular solves. Previous studies showed this approach usually works well for the

SN method in practice [46, 47]. A less common approach is computing the inverse matrix

using Gauss-Jordan elimination. When solving linear systems, Gauss-Jordan with row piv-

oting “yields numerical solutions as good as those obtained by Gaussian elimination.” [48]

Gauss-Jordan also has a blocked version [49] that utilizes BLAS-3 operations for better

performance. The numerical stability of blocked Gauss-Jordan, to the best of our knowl-

edge, has not yet been studied. For better stability on ill-conditioned matrices, one can

use methods based on orthogonal transformations. One of these methods is the bidiagonal

reduction-based matrix inversion proposed in [40]. It requires two-sided orthogonal trans-

formations to factorize A = UBV H with U, V unitary and B upper bidiagonal, making

this method much more expensive than elimination-based methods.
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3.3 Hybrid Polar Decomposition

A hybrid polar decomposition (HPD) method computes the Q matrix in two stages:

Xk+1 =


f1(Xk), 1 ≤ k ≤ Kp

f2(Xk), k > Kp

(3.24)

where Kp is a small integer, both f1 and f2 are iterative polar decomposition methods.

The HPD method was first introduced by Higham and Schreiber [50], where the HPD

algorithm switches from a scaled version of the Newton method (f1) to the original Newton-

Schulz method (f2) once the estimated ∥I − XH
k Xk∥1 in each iteration is smaller than a

prescribed threshold. Motivated by two observations, we extend [50] and consider other

polar decomposition methods for f1 and f2.

The first observation is the convergence histories of different polar decomposition meth-

ods. This observation was not discussed in [50]. All iterative polar decomposition methods

map the singular values of Xk from the interval [lk, 1] to [lk+1, 1], where lk+1 = f(lk) and

0 < lk < lk+1 ≤ 1. Therefore, with a proper l0 ≤ σmin in the first iteration, we can track

the singular value ranges of Xk easily and switch from f1 to f2 with no extra cost. Fig-

ure 3.1 shows the convergence histories of SN, DWH, SSNS, ZOLO-2, and ZOLO-4 for

a matrix with condition number 1016 (the largest condition number that can be handled by

double-precision data type). The theoretical upper bound of κ2(Xk) decreases rapidly in

the first several steps in SN, DWH, and ZOLO methods since they use rational polynomials

for approximating the step function. SSNS uses only low-order polynomials, so it is un-

able to amplify the smallest singular value significantly in one iteration and requires more

iterations to converge. SN, DWH, and SSNS have similar iteration counts if κ2(A) ≤ 2,

while SN, DWH, and ZOLO methods use no more than three iterations to reduce κ2(A)

from 1016 to less than 100. Therefore, HPD uses SN or DWH or ZOLO methods as f1 and

uses SN or SSNS as f2. We can easily read some HPD configurations from Figure 3.1,
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for example, 2 QDWH + 8 SSNS iterations. Figure 3.2 shows the convergence histories

of some HPD configurations. We note that the first iteration of SN always transforms the

singular values of the input matrix to [κ2(A)
−1/2, κ2(A)

1/2], so the condition number of Xk

does not change.
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Figure 3.1: The change of κ2(Xk) (left) and 1 −min(|λ|) (right) with respect to the num-
ber of iterations of different iteration polar decomposition methods for a matrix A with a
condition number κ2(A) = 1016 and the maximum absolute eigenvalue max(|λ|) = 1.
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Figure 3.2: The change of κ2(Xk) (left) and 1−min(|λ|) (right) with respect to the number
of iterations of different HPD algorithms for a matrix A with a condition number κ2(A) =
1016 and the maximum absolute eigenvalue max(|λ|) = 1.

The second observation is that different polar decomposition methods have different

costs for each iteration. This observation is the main motivation for using HPD in [50],

although it is unlikely that “a matrix multiplication can be done at twice the rate of matrix

inversion” on a single node. We first list the flop counts of each iteration in different
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methods (highest order term only):

• SN: 22n3/3 or 2n3 flops using a bidiagonal reduction-based method [40] or a LU

factorization,

• QDWH: 26n3/3 flops using Householder QR and treat all matrices as dense [29],

• CDWH: 10n3/3 flops [29],

• ZOLO-r: 26rn3/3 flops using Householder QR and treat all matrices as dense,

• SSNS: 4n3 flops.

On the other hand, HPD requires more iterations and may require more total flop counts

than using SN or DWH only. Table 3.1 compares the flop counts of some HPD configura-

tions with direct methods for achieving machine precision. Using 9 LU SN iterations has

the smallest flop count, but it also has a numerical stability issue (to be discussed in Sec-

tion 3.5.1). Two HPD configurations, 2 QDWH + 8 SSNS and 2 QDWH + 6 LU SN, require

fewer flops than using QDWH only. The 2 QDWH + 4 CDWH configuration also requires

fewer flops than six QDWH iterations, but we do not consider it a HPD configuration since

it only uses the DWH formula.

To obtain good performance on distributed-memory platforms, the parallel scalability

of linear algebra operations is usually more important than the flop counts. On modern

supercomputers, inter-node communication is the performance bottleneck of many linear

algebra algorithms. Using communication-reducing or communication-optimal algorithms

is essential for obtaining good performance on a large number of computing nodes. The

parallel implementations of linear algebra operations used in polar decomposition have

different parallel scalability. HPD benefits from such differences, which we will discuss in

Section 3.5.2 and Section 3.5.3.
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Table 3.1: Flop counts of different approaches for calculating polar decomposition. “Stable
SN” and “LU SN” refer to SN iteration using a bidiagonal reduction-based method and the
LU decomposition.

Iteration Number and Type Total Flops
9 LU SN 18n3

3 stable SN + 6 LU SN 32n3

6 QDWH 52n3

2 QDWH + 4 CDWH 30.67n3

4 ZOLO-2 58.67n3

3 ZOLO-4 104n3

44 SSNS 176n3

2 QDWH + 8 SSNS 49.33n3

2 QDWH + 6 LU SN 29.33n3

1 ZOLO-2 + 11 SSNS 61.33n3

4 stable SN + 8 SSNS 56n3

3.4 Parallel Algorithms

In this section, we describe the new parallel algorithms we used in HPD and analyze their

computation and communication costs. We count the total number of flops on the critical

path as the computation cost. We assume butterfly network collectives that are optimal or

near-optimal in the α − β model for communication cost analysis [28], which are optimal

or near-optimal in the α − β model. The cost of collective operations (assuming “large”

messages) used in the analysis are listed here, where n is the message size, P is the number

of processes, α is network latency, β is the inverse of network bandwidth, and the relatively

small computation cost in all-reduce is ignored:

Tbroadcast(n, P ) = α (log2(P ) + P − 1) + 2βn
P − 1

P
,

Tallreduce(n, P ) = 2α log2(P ) + 2βn
P − 1

P
,

Tallgather(n, P ) = α log2(P ) + βn
P − 1

P
.

For convenience, we assume all divisions in the algorithms have no remainder.
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3.4.1 Column Orthonormalization

In the QDWH algorithm, the Q matrix in QR factorization needs to be constructed ex-

plicitly. In fact, following the proofs in [41], QR factorization is unnecessary for QDWH.

QDWH only needs an orthonormal column basis instead of a strict Q component in the QR

factorization. From the parallel implementation point of view, it is very hard to balance the

flops in Householder QR (or CAQR) and Cholesky factorization if a 2D matrix partitioning

is used due to the shrinking of the trailing matrices in matrix factorization algorithms [1].

Since only an orthonormal column basis is needed, we have more algorithm options. An

important observation is that permuting the columns does not invalidate an orthonormal

column basis. This observation inspires us to use a simplified and blocked Modified Gram-

Schmidt (MGS) with a 2D block matrix partition and a 2D process grid. Algorithm 2 shows

the parallel simplified and blocked MGS (PSBMGS) algorithm with MATLAB colon no-

tation, where Ci refers to the column panel C ∈ Rm×b used in an iteration step.

Algorithm 2 Parallel Simplified and Blocked Modified Gram-Schmidt for Orthonormal-
ization
Input: p × q process grid, matrix A ∈ Rm×n,m ≥ n is 2D-partitioned into p × q blocks,

each process has a block Aij of size (m/p)-by-(n/q), panel size b.
Output: Orthogonal matrix Q ∈ Rm×n distributed in the same way as A.

1: Process Pi,j computes csj = (j − 1)bq + 1, cej = jbq, bq = b/q
2: for k = 1 : (n/b) do
3: ks = (k − 1)bq + 1, ke = kbq
4: Processes Pi,j, j ∈ [1, q] all-gather its Aij(:, ks : ke) as Ci (Ci has m/p rows)
5: Processes Pi,j, i ∈ [1, p] orthonormalize the columns of C = [CT

1 , · · · , CT
p ]

T using
shifted CholeskyQR3 or CholeskyQR

6: Process Pi,j locally stores Ci(:, csj : cej) to Qij(:, ks : ke)
7: Process Pi,j locally computes Gij = CT

i × Aij(:, ke + 1 : n/q)
8: Processes Pi,j, i ∈ [1, p] all-reduce sum Gij as Gj

9: Process Pi,j updates Aij(:, ke + 1 : n/q) = Aij(:, ke + 1 : n/q)− Ci ×Gj

10: end for

To achieve machine precision, Algorithm 2 needs to be applied twice like the MGS2

algorithm. In the first run, the column panels C may be ill-conditioned, so a shifted

CholeskyQR3 should be used in line 5. In the second run, the input matrix is well-
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conditioned. We use the CholeskyQR to reduce computation and communication costs.

Now we analyze the asymptotic complexity of Algorithm 2. The communication cost

of line 4 in each iteration is α log2(q) + βmb(q−1)
pq

, so its total communication cost is

Tpanel = 2
n

b

(
α log2(q) + β

mb(q − 1)

P

)
.

In each CholeskyQR, each process needs to perform 2mb2/p, b3/3, and mb2/p flops in the

Gram matrix computation, Cholesky factorization, and back substitution. The communica-

tion cost of each CholeskyQR is 2α log2(p) + 2βb2 p−1
p

. There are 4n/b CholeskyQR runs

in PSBMGS2, so its computation communication costs are

Cchol =
12mnb

p
+

4nb2

3
,

Tchol =
8n

b

(
α log2(p) + βb2

p− 1

p

)
.

Both lines 7 and 9 require 2m
p
bn−kb

q
flops per iteration, so it adds up to

Cproj = 4
mn2

P
− 4

mnb

P

flops. In each iteration, line 8 has communication cost 2α log2(p) + 2β
(

m
p

n−kb
q

)
p−1
p

. The

total communication cost of line 8 is

Tproj =
2n

b
α log2(p) + 2β

(
mn2

Pb
− mn

P

)
p− 1

p
.

The total computation and communication costs of PSBMGS2 are

CPSBMGS2 = Cchol + Cproj, (3.25)

TPSBMGS2 = Tpanel + Tchol + Tproj. (3.26)
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3.4.2 Blocked Gauss-Jordan

We use the blocked Gauss-Jordan to directly compute matrix inversions since it is simple

and can work well with 2D matrix partitioning. Algorithm 3 describes the parallel blocked

Gauss-Jordan (PBGJ) algorithm with MATLAB colon notation. For simplicity, once the

diagonal block D := A(ds : de, ds : de) is determined in an iteration, we partition A and B

as 
B11 A1c(B1c) A12

Br1 D Ar2

B21 A2c(B2c) A22

 , (3.27)

where B11 has size (ds − 1)× (ds − 1), D has size (de − ds + 1)× (de − ds + 1), and A22

has size (m− de)× (m− de).

Algorithm 3 Parallel Blocked Gauss-Jordan Matrix Inversion

Input: p×q process grid, matrix A ∈ Rm×m 2D-partitioned into p×q blocks, each process
has a block Aij of size (m/p)-by-(m/q), panel size b.

Output: Matrix B ∈ Rm×m, B = A−1 distributed in the same way as A.
1: ds = 1, fill B with 0
2: while ds < m do
3: Maximize de such that de − ds + 1 ≤ b and D := A(ds : de, ds : de) is on a

single process, calculate process grid coordinate (rr, rc) of the process that has current
diagonal block D

4: Process Prr,rc computes partially pivoted LU factorization [L,U, pivot] = LU(D)
and B(ds : de, ds : de) = D−1

5: Processes Pi,rc , i ∈ [1, p] broadcast column panel A1c, A2c as root processes to all
processes, Prr,rc also broadcasts the LU factors of D together with the column panel

6: Processes Prr,j, j ∈ [1, q] compute Br1 = D−1 ×Br1 and Ar2 = D−1 × Ar2 using
the LU factors of D

7: Processes Prr,j, j ∈ [1, q] broadcast row panel Br1, Ar2 as root processes to all
processes, Prr,rc also broadcasts the LU factors of D together with the column panel

8: Processes Pi,rc , i ∈ [1, p] compute B1c = −A1c × D−1 and B2c = −A2c × D−1

using the LU factors of D
9: Processes Pi,j, i ∈ [1, rr], j ∈ [1, rc] compute B11 = B11 − A1c ×Br1

10: Processes Pi,j, i ∈ [1, rr], j ∈ [rc, q] compute B12 = B12 − A2c ×Br1

11: Processes Pi,j, i ∈ [rr, p], j ∈ [1, rc] compute A12 = A12 − A1c × Ar2

12: Processes Pi,j, i ∈ [rr, p], j ∈ [rc, q] compute A22 = A22 − A2c × Ar2

13: ds = de + 1
14: end while
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In Algorithm 3, lines 8-12 are computed in parallel, and they are the most time-consuming

parts of the algorithm since m ≫ b in most cases. It is easy to know that in each iteration,

updating each element in D, B11, B21, A12, and A22 requires 2b flops, while updating each

element in Br1, Ar2, B1c, and B2b requires b flops. Therefore, each process performs no

more than 2bm2/P flops in each iteration. The total computation cost of PBGJ is

CPBGJ =
2m3

P
. (3.28)

The communication costs of lines 5 and 7 are

T5 = α (log2(q) + p− 1) + 2β
mb

p

q − 1

q
,

T7 = α (log2(p) + q − 1) + 2β
mb

q

p− 1

p
,

respectively. The total communication cost of PBGJ is

TPBGJ = α
m

b
log2(P ) + 2βm2

(
p+ q − 2

P

)
. (3.29)

3.4.3 Communication-Avoiding 3D Matrix Multiplication

The experiment results in Section 2.4 have demonstrated that CA3DMM can scale to a

large number of processors with good parallel performance and scalability. To achieve

optimal parallel performance, we utilize the CA3DMM algorithm for parallel GEMM in

our implementation.

3.5 Numerical Experiments

3.5.1 Numerical Stability

We first examine the numerical stability of various polar decomposition algorithms, includ-

ing hybrid versions. We use MATLAB for the experiments in this section. SN using LU
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factorization and Algorithm 3 are both implemented. We do not consider using the bidi-

agonal reduction-based matrix inversion in our parallel implementations (to be discussed

in Section 3.5.2), so we also omit it in this section. QDWH using MATLAB built-in QR

function and Algorithm 2 are both implemented. CA3DMM has no impact on numerical

stability, so we use the built-in matrix multiplication implementation in MATLAB. We also

implement a Gauss-Jordan-based DWH (GDWH) using formulas

Zk = I + ckX
H
k Xk, (3.30)

Xk+1 =
bk
ck
Xk +

(
ak −

bk
ck

)
XkZ

−1
k , (3.31)

where Z−1
k is computed using Algorithm 3. For comparison, we implement SN, QDWH,

CDWH, and ZOLO-2 using MATLAB’s built-in lu(), qr(), chol() functions, and

black-slash solver. Test matrices are generated using MATLAB function gallery(’randsvd’,

n, c) where n is the matrix dimension and c is the condition number.

We measure two relative errors:

Eorth = ∥XH
k Xk − I∥F/∥I∥F , (3.32)

Ecs = ∥A−Xk(H +HH)/2∥F/∥A∥F , where H = XH
k A. (3.33)

Eorth measures the orthogonality of Xk. H is the Hermitian polar factor of A, Ecs accu-

rately measures the preservation of the left singular vector space since Q = UV holds for

U and V given by the SVD A = UΣV H . Table 3.2 and Table 3.3 show the measured Eorth

and Ecs of different polar decomposition algorithms for 500× 500 matrices with different

condition numbers. All algorithms without using SN have both Eorth and Ecs reaching the

level of 10−15. Therefore, we categorize algorithms without using SN as stable algorithms,

and SN-related algorithms as quasi-stable algorithms. SN with LU factorization has Eorth

and Ecs being an order of magnitude larger than algorithms without SN. The Eorth and
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Ecs of SN are independent of κ2(A). Switching from LU to Algorithm 3 further decreases

the accuracy of SN. This is reasonable since Algorithm 3 only performs pivoting in each

diagonal block. In GDWH, Zk is symmetric positive definitive (SPD), so pivoting does not

have a large impact on the accuracy of Algorithm 3.

Table 3.2: Eorth of different polar decomposition algorithms for 500 × 500 matrices with
different condition numbers. “MQR QDWH” means the QDWH is implemented using
MATLAB built-in qr() function. Errors in italics do not reach 10−15 level.

κ2(A) 1e3 1e6 1e9 1e12 1e15
9 LU SN 8.68e-15 8.65e-15 8.65e-15 8.64e-15 8.82e-15

9 Alg1 SN 1.89e-13 5.74e-13 5.83e-13 3.40e-13 8.84e-13
6 MQR QDWH 1.18e-15 1.15e-15 1.15e-15 1.13e-15 1.13e-15
6 Alg2 QDWH 8.49e-16 8.25e-16 8.52e-16 8.37e-16 8.42e-16

44 SSNS 8.95e-16 8.91e-16 9.03e-16 9.05e-16 9.12e-16
4 MQR ZOLO-2 1.23e-15 1.61e-15 1.05e-15 1.36e-15 1.18e-15
4 Alg2 ZOLO-2 1.09e-15 7.41e-16 7.58e-16 1.02e-15 9.83e-16

2 MQR QDWH + 4 CDWH 7.75e-16 7.83e-16 7.89e-16 7.86e-16 7.71e-16
2 Alg2 QDWH + 4 GDWH 7.85e-16 7.75e-16 7.77e-16 7.74e-16 7.85e-16
2 Alg2 QDWH + 8 SSNS 9.01e-16 8.92e-16 8.93e-16 8.97e-16 9.08e-16

1 Alg2 ZOLO-2 + 11 SSNS 8.97e-16 9.01e-16 9.53e-16 1.02e-15 9.01e-16
2 Alg2 QDWH + 6 LU SN 8.75e-16 8.70e-16 8.71e-16 8.55e-16 8.74e-16

2 Alg2 QDWH + 6 Alg1 SN 1.89e-13 5.75e-13 5.50e-13 3.55e-13 1.21e-13
4 Alg1 SN + 9 SSNS 5.21e-16 5.22e-16 5.24e-16 5.25e-16 5.25e-16
4 LU SN + 9 SSNS 5.23e-16 5.20e-16 5.17e-16 5.24e-16 5.23e-16

3.5.2 Linear Algebra Operation Scalability

We implement Algorithm 2, Algorithm 3, and CA3DMM in C + MPI + OpenMP and com-

pare their parallel scalability with the counterparts in ScaLAPACK. All codes are compiled

using Intel C compiler v19.0.5 with optimization flags “-xHost -O3”. MVAPICH2 2.3.2

is used as the MPI backend. ScaLAPACK routines are provided by Intel MKL v19.0.5.

We tested pure MPI parallel and different numbers of MPI processes + OpenMP threads

combinations for ScaLAPACK routines, pure MPI parallel gives the best performance in

most cases. Therefore, all ScaLAPACK routines use one CPU core per MPI process and a

64 × 64 block size. We use a 512 block size for both Algorithm 2 and Algorithm 3. All
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Table 3.3: Ecs of different polar decomposition algorithms for 500 × 500 matrices with
different condition numbers. “MQR QDWH” means the QDWH is implemented using
MATLAB built-in qr() function. Errors in italics do not reach 10−15 level.

κ2(A) 1e3 1e6 1e9 1e12 1e15
9 LU SN 1.51e-14 1.64e-14 1.83e-14 1.94e-14 2.11e-14

9 Alg1 SN 8.30e-13 1.15e-11 5.53e-12 3.23e-12 7.45e-12
6 MQR QDWH 1.91e-15 1.93e-15 1.78e-15 2.13e-15 2.29e-15
6 Alg2 QDWH 1.52e-15 1.56e-15 1.47e-15 1.88e-15 2.00e-15

44 SSNS 4.14e-15 4.42e-15 4.93e-15 5.33e-15 5.88e-15
4 MQR ZOLO-2 1.32e-15 1.28e-15 1.27e-15 1.56e-15 1.46e-15
4 Alg2 ZOLO-2 1.21e-15 9.59e-16 1.08e-15 1.27e-15 1.40e-15

2 MQR QDWH + 4 CDWH 2.41e-15 1.95e-15 1.96e-15 2.27e-15 2.36e-15
2 Alg2 QDWH + 4 GDWH 2.40e-15 1.96e-15 1.97e-15 2.27e-15 2.33e-15
2 Alg2 QDWH + 8 SSNS 1.81e-15 1.75e-15 1.64e-15 2.02e-15 2.12e-15

1 Alg2 ZOLO-2 + 11 SSNS 1.12e-15 1.22e-15 1.41e-15 1.72e-15 4.19e-15
2 Alg2 QDWH + 6 LU SN 1.42e-14 1.28e-14 1.26e-14 1.23e-14 1.27e-14

2 Alg2 QDWH + 6 Alg1 SN 8.77e-12 8.34e-12 1.51e-12 1.61e-12 9.53e-13
4 Alg1 SN + 9 SSNS 3.17e-13 6.45e-12 3.09e-12 8.73e-13 1.37e-12
4 LU SN + 9 SSNS 1.04e-14 1.33e-14 1.57e-14 1.71e-14 1.81e-14

tests are performed on the Georgia Tech Hive-Phoenix cluster. Each computing node of

this cluster has two Intel Xeon Gold 6226 12-core processors and 192 GB DDR4 memory.

Computing nodes are connected using a 100 Gb/s InfiniBand networking.

Figure 3.3 shows the strong scaling curves of different parallel linear algebra algorithms

used in one polar decomposition iteration. CA3DMM has the best parallel scalability and

shortest runtime since it has the smallest asymptotic communication cost. PBGJ scales

a little better than ScaLAPACK LU factorization and matrix inversion. PSBMGS2 and

ScaLAPACK QR decomposition have similar scalability, but PSBMGS2 is faster even if

it requires more flops. As for ScaLAPACK QR, [39] shows two important points: (1) the

parallel CAQR and the ScaLAPACK QR “match in the number of flops and words trans-

ferred” but the parallel CAQR sends fewer messages than ScaLAPACK QR thanks to using

TSQR for panel factorization, and (2) the parallel CAQR attains the parallel QR commu-

nication cost lower bounds. Therefore, replacing ScaLAPACK QR with a parallel CAQR

implementation, for example, the QR implementation in the SLATE library, can improve
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Figure 3.3: Strong scaling of different parallel linear algebra algorithms used in one polar
decomposition iteration. Test matrix dimension is n × n for LU, matrix inversion, and
matrix multiplication, 2n×n for QR and PSBMGS2, n = 20000. All ScaLAPACK routines
use 1 CPU core per MPI process, and their results are plotted with solid lines. PSBMGS2,
PBGJ, and CA3DMM use 1 MPI process with 24 CPU cores per node, and their results are
plotted with dashed lines.

the performance of QR but cannot reduce the communication complexity of QR. In other

words, the parallel scalability of communication-optimal parallel QR algorithms will be

very similar to that of ScaLAPACK QR. The difference in runtime and communication

cost lower bounds between linear algebra operations justifies the use of HPD for scaling to

a large number of nodes. The advantages of our implementations over ScaLAPACK rou-

tines show the importance of utilizing hierarchical parallelization for lower communication

costs.
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We do not consider the bidiagonal reduction-based matrix inversion mentioned in [40]

since it is harder to implement than QR factorization but unlikely to make SN sufficiently

faster than QDWH. The bidiagonal reduction-based matrix inversion has three steps:

1. Bidiagonal reduction: A = UBV H with U, V unitary and B upper bidiagonal,

2. Solve BY = UH for Y with back substitution,

3. Compute A−1 = V Y .

One can use Householder reflectors to compute U and V , and the U matrix needs to be

constructed explicitly for the second step. Therefore, both the bidiagonal reduction and

the construction of U need 8n3/3 flops in the sequential implementation [1]. As a com-

parison, the Householder QR in QDWH requires 10n3/3 flops for the factorization of a

2n × n matrix and another 10n3/3 flops for constructing the Q matrix from Householder

reflectors. The bidiagonal reduction is not implemented in ScaLAPACK or other paral-

lel linear algebra libraries. Since both the bidiagonalization and the Householder QR use

Householder reflectors and communication operations are the performance bottlenecks of

parallel Householder QR, the runtime of a carefully implemented parallel bidiagonaliza-

tion for a n× n matrix is likely to be very similar to the runtime of a parallel Householder

QR for a 2n × n matrix. As a result, the runtime of one SN iteration using the bidiagonal

reduction-based matrix inversion is likely to be very similar to the runtime of a QDWH

iteration using a Householder QR. Meanwhile, Figure 3.1 shows that QDWH reduces the

condition number of the matrix much faster than SN in the first three steps. Therefore,

we think QDWH should be a better candidate for f1 compared to SN with the bidiagonal

reduction-based matrix inversion.

3.5.3 Hybrid Polar Decomposition Scalability

We implement three polar decomposition algorithms SN, QDWH, SSNS, and three HPD

algorithms QDWH + SSNS, ZOLO + SSNS, QDWH + SN, using our parallel implementa-
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tions of Algorithm 2, Algorithm 3, and CA3DMM. The code is compiled and tested using

the same compiler and configurations as those in Section 3.5.2. For comparison, we also

compile and test the POLAR library [37]. POLAR implements QDWH and CDWH using

ScaLAPACK.

Figure 3.4 shows the strong scaling curves of different polar decomposition algorithms

for a 20000×20000 random matrix. We set POLAR to run 2 QDWH + 4 CDWH iterations

and only count the running time of these six iterations. The scaling trends of tested algo-

rithms align with the trends in Figure 3.3. The comparison between algorithms leads us to

some important conclusions.

First, we can balance performance, scalability, and numerical stability by choosing and

combining different algorithms. Using SN solely is the fastest, but it is quasi-stable if the

matrix inverse is calculated by LU or blocked Gauss-Jordan. Stable algorithms require

a bidiagonal reduction-based matrix inversion (SN) or column orthonormalization (DWH

and ZOLO), which has larger computation and communication costs, and worse parallel

scalability than matrix multiplication, LU factorization, and blocked Gauss-Jordan.

Second, if an accurate solution is desired, HPD algorithms may run faster and have

better parallel efficiency than direct PD methods. The 2 QDWH + 8 SSNS scheme is much

faster than the 44 SSNS scheme, and its advantage over the 6 QDWH scheme becomes

larger when running on a larger number of nodes. The 1 ZOLO-2 + 11 SSNS scheme is a

little slower than the 2 QDWH + 8 SSNS scheme. Both schemes require two column or-

thonormalizations, but the advantage of doing two column orthonormalizations in parallel

is canceled by three SSNS iterations in ZOLO-2. We can expect that other ZOLO-r + SSNS

schemes will also have the same issue. Therefore, QDWH is usually better than ZOLO-r

for the first iterative method in HPD. The runtime difference between the 2 QDWH + 6

SN and 2 QDWH + 8 SSNS schemes shows that SSNS is a better choice for the second

iterative method in HPD when running on a large number of nodes.

Third, utilizing hierarchical parallelism and reducing communication costs are impor-
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Figure 3.4: Strong scaling of different polar decomposition algorithms for a 20000×20000
matrix. SN, QDWH, ZOLO-2, and SSNS are implemented using Algorithm 3, Algo-
rithm 2, and CA3DMM. The POLAR library implements QDWH and CDWH using
ScaLAPACK. All algorithms except POLAR use one MPI process with 24 CPU cores
per node. POLAR uses one MPI process per CPU core. Stable and quasi-stable algorithms
are plotted with solid and dashed lines, respectively. The current test driver program for
ZOLO-2 runs out of memory on four nodes.

tant for parallel algorithm scalability, even if it requires more flops. Six QDWH iterations

with PSBMGS2 require 60n3, almost twice the 30.67n3 flops required by 2 QDWH + 4

CDWH in the POLAR library. However, POLAR is just a little faster than 6 QDWH with

PSBMGS2 on 16 or fewer nodes, and POLAR is slower on 32 or more nodes.
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3.6 Conclusions

In this work, we reviewed different types of polar decomposition algorithms and adopted

the hybrid polar decomposition approach for scaling up this linear algebra operation to

large supercomputers. HPD is driven by the convergence histories of different polar de-

composition algorithms and the parallel scalability of linear algebra operations used in po-

lar decomposition. We designed and implemented new parallel linear algebra algorithms to

help scale up HPD with hierarchical parallelization. Numerical experiments show that our

new parallel algorithms and HPD scale better than ScaLAPACK routines and ScaLAPACK-

based polar decomposition implementations.

Experiment results in Section 3.5 also leave us with some future research topics. The

first topic is the scalability of column orthonormalization. Although Algorithm 2 is faster

than ScaLAPACK QR, its parallel efficiency drops very fast when scaling to a large num-

ber of nodes. QDWH is the best choice for obtaining high-accuracy solutions, and its

scalability is bounded by column orthonormalization. The second topic is the possibility of

improving the accuracy of blocked Gauss-Jordan without harming its parallel performance.

SN converges rapidly and a blocked Gauss-Jordan is much cheaper than a column orthonor-

malization, improving the accuracy of blocked Gauss-Jordan makes SN more competitive.
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CHAPTER 4

EXPLORING THE DESIGN SPACE OF DISTRIBUTED PARALLEL SPARSE

MATRIX-MULTIPLE VECTOR MULTIPLICATION

4.1 Introduction

Linear algebra operations with sparse matrices are fundamental computational kernels in

scientific computing, big data analysis, and artificial intelligence. While the sparsity of

matrices greatly reduces computational costs, harnessing this sparsity poses a challenge.

Therefore, accelerating sparse matrix linear algebra operations is crucial and extensively

researched.

In sparse matrix linear algebra operations, sparse-dense matrix-matrix multiplication

(SpMM) is an important building block. SpMM is used in block iterative solvers [51, 52,

53], dynamical simulations [54], non-negative matrix factorization (NNMF) [55, 56], graph

neural network (GNN) training [57, 58, 59, 60], and deep neural network (DNN) training

[61, 62]. SpMM calculations exhibit substantial parallelism, underscoring the need for

efficient utilization of parallel resources to reduce computation time. Moreover, commu-

nication costs have been for a long time relatively more expensive than computation on

both shared-memory and distributed-memory platforms. Reducing communication costs is

the key to obtaining high performance in SpMM and other parallel algorithms. This work

specifically concentrates on reducing communication costs in distributed-memory parallel

SpMM.

A natural approach to parallelize SpMM is to treat it as sparse-dense matrix-vector

multiplication (SpMV) with multiple input vectors and using the same parallelization as

SpMV. This SpMV-based parallel SpMM approach can benefit from well-studied paral-

lel SpMV algorithms. Methods such as (hyper)graph partitioning [63, 64, 65, 66] and
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other algorithms [67, 68] have been proposed for partitioning sparse matrices to reduce the

communication costs of SpMV. A parallel SpMM implementation can directly reuse these

sparse matrix partitionings and replace the local SpMV calculation with a SpMM routine to

achieve good performance. However, SpMM introduces additional parallelism and allows

partitioning the dense input vectors, enabling further reduction in communication costs and

improvement in parallel performance.
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1 ∎ ∎ ∎
2 ∎ ∎ ∎ ∎
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Figure 4.1: Two SpMM parallelization schemes for a 16 × 16 Laplacian matrix A and 4
processes: (a) parallelize over the rows of A only and (b) parallelize over both the rows of
A and the columns of B. Scheme (b) needs to replicate A once but needs to replicate fewer
B matrix rows (required by non-zeros in off-diagonal blocks, marked with colors).

Figure 4.1 shows an example of two SpMM parallelization schemes: partitioning the

sparse matrix only like SpMV and partitioning both the sparse matrix and the input vectors.

In the case of a relatively large number of input vectors, the second scheme requires a

smaller communication size. Further, these two parallelization schemes are not the only

two schemes for the given sparse matrix and four processes. Other schemes may further

reduce the SpMM communication size. This example raises a fundamental question:

when and how should the parallelism of multiple input vectors be harnessed to reduce the

communication costs of parallel SpMM? No existing research has considered this issue.

In response to this inquiry, this work makes the following contributions.

• In Section 4.2, we first analyze the vast design space of parallelizing SpMM, com-

57



pare various parallelization schemes, and position existing parallel SpMM algorithms

within the design space.

• Section 4.3 formulates the communication cost models for different parallelization

schemes and provides illustrative examples for these cost models.

• In Section 4.4, we propose an algorithm to optimize the process grid geometry, aim-

ing to reduce communication costs with multiple levels of parallelism.

• Finally, in Section 4.5, we present theoretical analysis and numerical experiment

results to demonstrate the efficacy of our new algorithm in reducing SpMM com-

munication costs and achieving superior parallel performance compared to existing

algorithms.

In this work, we assume that a process is not limited by memory size. Such limitations

can be incorporated in practice but are omitted here for simplicity. We also assume that

the number of vectors being multiplied simultaneously is large enough so that there are no

additional efficiencies, e.g. from vectorization, gained by simultaneously multiplying more

vectors. (When going from 1 to 4 vectors, there are great performance benefits of SpMM

(time per vector), but not from, say 100 to 400 vectors, since the multiplication by 100

vectors is already highly vectorized.) In this regime, communication performance is much

more important than vectorization and cache performance.

4.2 The Design Space of Parallelizing SpMM

Similar to the discussions in Section 2.2, parallel SpMM algorithms can also be categorized

into 1D, 2D, or 3D algorithms. However, the algorithm discussed in Section 2.3 cannot be

directly applied to SpMM since the sparsity of matrix A introduces both restrictions and

opportunities in parallel algorithm design. In this section, we will explore the design space

of parallelizing SpMM and position existing parallel SpMM algorithms within this design

space.
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4.2.1 1D Parallelization Schemes for SpMM

One-dimensional (1D) parallelization schemes are fundamental and commonly used ap-

proaches for parallelizing SpMV and SpMM. Categorized based on the partitioned di-

mension of the MM iteration space, 1D parallelization schemes include m-dimension, k-

dimension, and n-dimension parallelization schemes.

An m-parallelization corresponds to a 1D row partitioning of both A and C. The rows

of A and C are partitioned and assigned to different processes in a consistent manner. The

rows of A and C owned by each process might be discontiguous. Each process needs

to gather a portion of B matrix rows for its local SpMM calculation, with no additional

communication required.

A k-parallelization corresponds to a 1D partitioning of both the columns of A and

the rows of B. The columns of A and the rows of B are assigned to different processes

in a consistent manner, and each process might have discontiguous columns of A. No

communication is needed before the local SpMM computation. Following the local SpMM,

the partial results of C need to be reduced and added to obtain the final C matrix.

To balance the computational workload, the rows of A owned by each process in the

m-parallelization should contain approximately the same number of non-zeros. As a pro-

cess may own discontiguous rows of A, various algorithms can be used to compute row

partitionings of A with approximately balanced non-zero distributions. It should be noted

that permuting the rows of A and assigning a row block with contiguous rows to a process

is equivalent to assigning a set of possibly discontiguous rows of the original matrix to the

same process. Similarly, a dual discussion holds for the k-parallelization.

An n-parallelization corresponds to a 1D column partitioning of both B and C. This

method divides the original SpMM calculation into sub-tasks, each of which computes a

portion of the input vectors through SpMM or SpMV operations. This approach is simpler

than partitioning along the m or k dimension because different input vectors are identical in

terms of both computation and communication. The only required communication involves
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replicating A between processes.

4.2.2 2D and 3D Parallelization Schemes for SpMM

The 1D parallelization schemes are independent of each other and can be combined to get

2D and 3D parallelization schemes. Without loss of generality, we arrange p processes as

a 3D grid of size pm × pk × pn = p, where pm, pn, pk ≥ 1. This 3D process grid results

from combining a pm-way m-parallelization, a pn-way n-parallelization, and a pk-way k-

parallelization.

We first consider the 2D parallelization that partitions both the m and n dimensions.

This mn-parallelization involves 1D row partitioning of A and 1D column partitioning of

B, both of which are independent of each other. Thus, a pm-way m-parallelization can be

directly combined with a pn-way n-parallelization. Similarly, a pk-way k-parallelization

can be directly combined with a pn-way n-parallelization to obtain a kn-parallelization.

The direct combination of k-parallelization and m-parallelization will result in a 2D

checkerboard partitioning of A, generally leading to an imbalance distribution of non-zeros.

Below, we will introduce various algorithms that can be employed to calculate a 2D sparse

matrix decomposition, ensuring a nearly balanced distribution of non-zeros and achieving

an optimal or near-optimal SpMV communication cost. Nevertheless, the computation of

a high-quality 2D decomposition could be computationally expensive.

The 3D mnk-parallelization can be considered as having pn groups of processes, where

each group’s pm × pk processes perform the computation of multiplying A with n/pn

columns of B using a 2D partitioning of A. This naturally inherits all properties of mk-

parallelization.

All 2D and 3D parallelization schemes inhabit an extensive design space that is spanned

by two perpendicular subspaces. The first subspace involves the dimensions of a general-

ized 3D process grid pm × pn × pk = p, where 1 ≤ pm, pn, pk ≤ p. The second subspace

constitutes the solution space for partitioning the sparse matrix A. If p has numerous prime
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factors, multiple triplets satisfying pm × pn × pk = p can exist. Following the selection of

the number of row and column partitions (the values of pm and pk), various algorithms can

be used to compute a decomposition of A.

4.2.3 Existing Parallel SpMM Algorithms

In this section, we locate existing parallel SpMM algorithms in the huge design space of

parallelizing SpMM, and discuss their strengths and weaknesses.

We first consider SpMV-based parallel SpMM algorithms. SpMV is one of the well-

studied topics in parallel computing. Many optimizations for SpMV has been proposed,

including

• New sparse matrix storage schemes (e.g., sliced ELLPACK [69], ESB [70], SELL-

C-σ [71], CSR5 [72]);

• Workload partitioning and load balancing strategies (e.g., merge-based partition-

ing [73], adaptive partitioning for using the CSR format on GPUs [74, 75]);

• (Hyper)graph-based-partitioning schemes (e.g., [64, 65, 66]) and other partitioning

algorithms (e.g., [67, 68]) for minimizing communication volume;

• Inspector-Executor (I-E) frameworks that inspect a matrix’s sparsity structure and

choose a matrix-specific storage format, parallelization scheme, and/or even gener-

ated source code (e.g., [76, 77, 78]).

Most of these optimizations fall into the categories of m-parallelization and mk-parallelization.

For the latter, the sparse matrix can be partitioned using 2D checkerboard partitioning [66],

2D jagged-like partitioning (the sparse matrix is first partitioned into multiple row or col-

umn blocks, then each row or column block is partitioned independently) [66], 2D fine-

grain partitioning (non-zeros are individually assigned to processes) [65, 66], and other

methods like the Mondrian algorithm [67, 68] and the merge-based SpMV [73]. For im-

proving the communication performance of distributed parallel SpMV, Bienz et al.[79]
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also proposed a node aware parallel SpMV algorithm to utilize the knowledge of system

topology for improving inter-node communication performance.

Driven by the need to accelerate GNN and sparse DNN, multiple new shared-memory

parallel SpMM algorithms targeting multi-core CPUs [80, 81] and GPUs [82, 83, 84, 62,

59] have surfaced in recent years. These algorithms mainly focus on cache blocking, effi-

cient vectorization, and other low-level hardware-oriented optimizations. Both new CPU

SpMM algorithms use m-parallelization. Due to the difference in parallel programming

models, some GPU SpMM algorithms can be categorized into either mk-parallelization or

mnk-parallelization.

In terms of distributed-memory parallel SpMM, multiple studies reuse or modify paral-

lel dense general matrix multiplication (GEMM) algorithms for SpMM. In the work of

Koanantakool et al. [85], the authors assumed that the non-zeros in A are uniformly

distributed and analyzed the communication costs of applying 1D, 2D SUMMA (mn-

parallelization), and 3D SUMMA (mnk-parallelization) GEMM algorithms to SpMM di-

rectly. They further proposed three new 1.5D SpMM algorithms, which can be cate-

gorized into n-parallelization and nk-parallelization. Some application papers describe

the parallel SpMM algorithms used by one or multiple higher-level driver algorithms.

MPI FAUN [56] uses a 1.5D algorithm (mk-parallelization) and CAGNET [57] uses a

2D algorithm (mn-parallelization). These algorithms are designed for handling tall-skinny

B matrices. Selvitopi et al. [86] implemented these algorithms and another 2D algorithm

(mn-parallelization) using both the bulk synchronous parallel model and the asynchronous

parallel model with one-sided communication. All aforementioned GEMM-based parallel

SpMM algorithms partition the sparse matrix A into equal-size blocks without considering

the distribution of non-zeros. As a result, some A blocks can be empty, leading to severe

load imbalance and a large number of unnecessary communications of B matrix elements.

Only a few parallel SpMM algorithms that consider the sparsity of A have been pro-

posed. Acer et al. [87] proposed a generic framework that uses both graph and hypergraph

62



partitioning for minimizing communication costs of SpMM using 1D m-parallelization.

Recently, Gianinazzi et al. proposed an “arrow matrix decomposition” approach[88] for

parallel SpMM. This approach decomposes the sparse matrix A of the form A =
∑l

i=1 PiBiP
T
i ,

where Pi is a permutation matrix, Bi is an arrowhead sparse matrix with a user-specified

tile size b. An L-shape decomposition is applied to Bi for parallelizing the SpMM cal-

culation, without utilizing n-dimension parallelism. Each arrow decomposition requires a

specific number of processes, which cannot be calculated easily, for running SpMM. Given

that calculating an arrow decomposition is even more expensive than finding a 2D decom-

position using hypergraph partitioning or the Mondrian algorithm, this method is hard to

use in practice.

Some high-level multi-purpose libraries also support parallel SpMM computation. The

Cyclops Tensor Framework (CTF) [25] uses the 2.5D algorithm [17] (mnk-parallelization)

for parallel sparse and dense matrix multiplications. The Portable, Extensible Toolkit for

Scientific Computing (PETSc) library [89, 90] also supports parallel SpMM computation.

PETSc uses 1D row partitioning for sparse matrices [91], so its parallel SpMV and SpMM

use 1D m-parallelization. Neither CTF nor PETSc is fine tuned for parallel SpMM.

4.3 Data Transfers in Parallel SpMM

In this section, we discuss the data transfer size, referring to the number of matrix elements

requiring communication in a parallel SpMM algorithm. We will not consider any possi-

ble special properties (for example, symmetry) of A. Additionally, we assume that all p

processes share one copy of A and B at the beginning, and one copy of C at the end.

4.3.1 Notation

We consider a parallel algorithm using p processes for computation. All processes have

the same number of cores and the same size of memory. A network connects all processes

and inter-process data exchange must go through the network. Let P be the grid of all
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p processes. P can be organized as a 1D, 2D, or 3D grid, and is indexed with tuples of

the same dimension. We use one-based indexing for the process grid and MATLAB colon

notation to indicate a slice of processes or a slice of a matrix, for example, P (2, :) refers

to all processes in the second row of a 2D process grid, and A(1 : 4, :) refers to the first

four rows of matrix A. To represent row and column index sets, we use capital letters I and

J , respectively. For example, if I1 = {1, 2, 3, 4}, then A(I1, :) refers to the first four rows

of matrix A. The nnz(·) function denotes the number of non-zeros in a matrix or matrix

block. We introduce two new functions to facilitate the discussion of communication costs:

• The nec(·) function denotes the set of non-empty column (columns that have non-

zeros) indices in a matrix block;

• The ner(·) function denotes the set of non-empty row (rows that have non-zeros)

indices in a matrix block.

We use |·| to denote the size of a set. Finally, m, k, and n are the matrix dimensions defined

in (Equation 1.1).

4.3.2 Data Transfers in 1D Parallelization

The m-parallelization. Denote the A matrix rows owned by process Pi as A(Ii, :). The

output matrix C is divided according to the row partitioning of A to avoid communication:

process Pi owns C(Ii, :) and computes C(Ii, :) = A(Ii, :) × B. To avoid communication,

we require that each row of B is owned by one process that uses this row in its local SpMM

(a common practice for 1D row parallel SpMV). The only communication required in this

parallelization scheme is gathering rows of matrix B. The total number of matrix elements

to be transferred is

Sm(p) =

(
p∑

i=1

|nec(A(Ii, :))| − k

)
n. (4.1)

The k-parallelization. This scheme is analogous to an m-parallelization. Denote the

column block of matrix A owned by process Pi as A(:, Ji). Correspondingly, Pi owns
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B(Ji, :) and possesses |ner(A(:, Ji))| rows of partial C matrix. We also require that each

row of C is owned by one process with a partial result of this row to avoid communication.

The total number of matrix elements to be transferred is

Sk(p) =

(
p∑

i=1

|ner(A(:, Ji))| −m

)
n. (4.2)

The n-parallelization. The B and C matrices are distributed in the same way. This

scheme only requires replicating A p − 1 times so that each process has a full copy of A.

The total number of matrix elements to be transferred is

Sn(p) = (p− 1) · nnz(A). (4.3)

4.3.3 Data Transfers in 2D and 3D Parallelization

We first consider the mn-parallelization and the kn-parallelization. As discussed in Sec-

tion 4.2.2, these 2D parallelization schemes can be achieved by directly combining an

existing m-parallelization or k-parallelization with an existing n-parallelization. Using the

formulas in Section 4.3.2, the total number of matrix elements to be transferred in an mn-

parallelization is

Smn(pm, pn) =

(
pm∑
i=1

|nec(A(Ii, :))| − k

)
n+ (pn − 1) · nnz(A), (4.4)

and the total number of matrix elements to be transferred in a kn-parallelization is

Skn(pk, pn) =

(
pk∑
i=1

|nec(A(:, Ji))| −m

)
n+ (pn − 1) · nnz(A). (4.5)

For an mk-parallelization, the total number of matrix elements to be transferred de-

pends on the 2D sparse matrix decomposition algorithm. If a 2D checkerboard or a 2D
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jagged-like partitioning is used, the total data transfer size can be expressed in the form of

Smk(pm, pk) =

p∑
i=1

|nec(A(Ii, Ji))|+
p∑

i=1

|ner(A(Ii, Ji))| −K, (4.6)

where K is a constant that depends on the distribution of B and C for reducing communi-

cation. The total number of matrix elements to be transferred for the mnk-parallelization

also depends on the 2D partitioning of A.

4.3.4 Examples of Parallel SpMM Data Transfer

Table 4.1 summarizes the frequently used notations and formulas in Section 4.3.2 and Sec-

tion 4.3.3. We use an example to illustrate some the notations and formulas.

Table 4.1: Summary of notations used in Section 4.3.2 and Section 4.3.3

Notation Meaning
nec(·) The set of non-empty column indices in a block
ner(·) The set of non-empty row indices in a block
Sm(p) m-parallelization total communication size
Sn(p) n-parallelization total communication size
Sk(p) k-parallelization total communication size
Smn(pm, pn) mn-parallelization total communication size
Skn(pk, pn) kn-parallelization total communication size
Smk(pm, pk) mk-parallelization total communication size

We use Figure 4.1 as the example. Let I1 = {1, 2, 3, 4}, I2 = {5, 6, 7, 8}, I3 =

{9, 10, 11, 12}, and I4 = {13, 14, 15, 16}. We have

nec(A(I1, :)) = ner(A(:, I1)) = {1, 2, 3, 4, 5, 6, 9, 11},

nec(A(I2, :)) = ner(A(:, I2)) = {3, 4, 5, 6, 7, 8, 13, 15},

and so on. We first consider a m-parallelization (Figure 4.1a). Process P1 owns B(I1, 1 :

n) and it needs to receive B({5, 6, 9, 10}, 1 : n) for computing C(I1, :) = A(I1, 1 : n)×B.

Process P2 owns B(I2, 1 : n) and it needs to receive B({3, 4, 13, 15}, 1 : n) for computing
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C(I2, :) = A(I2, 1 : n) × B. Similar analysis can be applied to P2, P3 and P4. The total

communication size is

Sm(4) =

(
4∑

i=1

|nec(A(Ii, :))| − 16

)
n = 16n.

Now we consider an mn-parallelization for this matrix with pm = pn = 2 (Figure 4.1b).

Let Ĩ1 = I1 ∪ I2 and Ĩ2 = I3 ∪ I4. Let P1 and P3 own A(Ĩ1, :), and let P2 and P4

own A(Ĩ2, :). Process P1 now needs to receive B({9, 11, 13, 15}, 1 : n/2) for computing

C(Ĩ1, 1 : n/2) = A(Ĩ1, 1 : n)× B(Ĩ1, 1 : n/2). Similar analysis applies to P2, P3, and P4.

The total communication size is

Smn(2, 2) =

(
2∑

i=1

|nec(A(Ĩi, :))| − 16

)
n+ (2− 1)nnz(A) = 8n+ 60.

If n ≥ 8, the mn-parallelization has a smaller communication cost than the m-parallelization.

4.3.5 Near-Optimal Parallel SpMM

As we discussed in Section 4.2.2, the parallelization of SpMM encompasses an extremely

large solution space, defined by two perpendicular subspaces. Finding an optimal SpMM

parallelization is thus very challenging. This is true not even mentioning that finding an op-

timal SpMM parallelization would involve hypergraph partitioning as a subproblem, which

is known to be NP-hard [92].

Instead of finding an optimal SpMM parallelization, a near-optimal parallelization can

be computed via a brute-force approach in a restricted design space. This involves enumer-

ating all combinations of pm×pk×pn = p, followed by computing a 1D or 2D partitioning

of A that minimizes the data transfer size of parallel SpMV using pm × pk processes (the

restricted design space), and then choosing the parallelization that has the lowest SpMM

data transfer size. This approach is computationally expensive when there are many ways

to factor p, or when A is very large.
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In the next section, we propose an approach that is more practical than this brute-force

approach, and that we also show can work well in practice.

4.4 The CRP-SpMM Algorithm

In this section, we present the Communication-Reduced Parallel SpMM (CRP-SpMM)

algorithm. CRP-SpMM optimizes the process grid geometry for SpMM using the sparsity

pattern of matrix A and the cost models developed in Section 4.3. It can be implemented

easily by reusing existing 1D m-parallel SpMV / SpMM algorithms. In this section, we

will continue to use the notation defined in Section 4.3.

4.4.1 Process Grid Geometry and Matrix Partitioning

The CRP-SpMM algorithm is grounded in the SpMM data transfer size models discussed

in Section 4.3. The exhaustive approach outlined in Section 4.3.5 for identifying an optimal

SpMM parallelization scheme can be very expensive. Instead of seeking the optimal solu-

tion, our objective is to employ a cost-effective method to identify a parallelization scheme

with lower communication costs than the traditional 1D m-parallelization.

CRP-SpMM uses a generalized 2D mn-parallelization instead of a generalized 3D par-

allelization for three reasons. Firstly, the solution space of pm× pn = p is smaller than that

of pm × pn × pk = p for the same p. Additionally, as discussed in Section 4.3.3, finding a

2D partitioning of a sparse matrix with a balanced non-zero distribution is more computa-

tionally expensive than finding a balanced 1D row partitioning. Lastly, handling irregular

replications of B matrix rows is easier than dealing with irregular reductions of partial re-

sults in the C matrix. Hence, we opt for mn-parallelization over kn-parallelization. We

also opt out the mk-parallelization since it is the traditional parallelization by using a 2D

partitioning of A without utilizing n-dimension parallelism.

Given that we will use the generalized 2D mn-parallelization, CRP-SpMM must deter-

mine (1) a pm × pn = p process grid and (2) a 1D pm-way row partitioning for the sparse
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matrix A. It seems that pm of the process grid must be chosen first, followed by the 1D

pm-way partitioning. However, CRP-SpMM does these two steps together.

(Hyper)graph-partitioning-based 1D row partitioning methods can yield favorable so-

lutions, particularly in terms of data transfer size. However, running these algorithms mul-

tiple times can be computationally expensive. One potential approach involves initially

computing a p-way row partitioning of A, followed by generating different pm-way row

partitionings through the merging of row blocks from the initial p-way row partitioning.

We are unaware of the existence of an algorithm for this specific task. A possible greedy

approach involves iteratively merging two row blocks with the largest communication size

until only pm row blocks with approximately the same number of non-zeros remain. We

leave this as a topic for future study.

Assigning discontiguous rows to the same process is equivalent to reordering the matrix

rows and dividing A into multiple row blocks, each containing contiguous rows of A. The

reversed Cuthill–McKee algorithm [93] and other algorithms can be used for reordering the

sparse matrix and improve parallel SpMV performance [94, 95, 96]. CRP-SpMM allows

the higher-level driver algorithm to select a proper reordering algorithm and other methods

for calculating a 1D p-way row partitioning of A, and uses this partitioning as an input and

a baseline in searching the 2D process grid.

CRP-SpMM uses a greedy algorithm to determine the 2D process grid geometry, uti-

lizing the following formula for calculating communication size:

S(pm, pn) = r(A) ·

(
pm∑
i=1

|nec(A(Ii, :))| − k

)
n+ f(A) · (pn − 1) · nnz(A). (4.7)

Formula (Equation 4.7) differs from Formula (Equation 4.4) in two places. Firstly, Formula

(Equation 4.7) takes the reuse of A into consideration. In iterative solvers and some other

algorithms, A remains unchanged while B is updated between iterations. Hence, A only

needs to be replicated once if pn > 1. The constant r(A) is used to specify the number of
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times A will be reused. A driver algorithm can estimate a lower bound of r(A), or simply

set it as 1 if the lower bound of r(A) is hard to estimate. Secondly, Formula (Equation 4.7)

accounts for the storage of a row or column index whenever a nonzero value is stored. For-

mula (Equation 4.7) contains the constant f(A), defined as the total memory size required

to store A divided by the total memory size needed to store only the non-zeros values (ex-

cluding their row and column indices). To illustrate, if A is stored in the compressed sparse

row (CSR) format using a 4-byte integer data type for column indices and an 8-byte floating

point data type for non-zeros values, f(A) = 1.5.

The search of a 2D process grid for minimizing Formula (Equation 4.7) is based on the

following assumption.

Assumption 1. The number of B matrix elements to be transferred in a 1D row-wise par-

allel SpMM increases monotonically with the number of processes.

In other words, using a smaller pm is likely to reduce the first term on the RHS of

Formula (Equation 4.7). If this reduction outweighs the increase in the second term on the

RHS, then a more favorable 2D process grid is identified. This observation also leads us to

Assumption 2.

Assumption 2. For the same sparse matrix, the optimal pn increases when p and/or n

increases.

CRP-SpMM finds a 2D process grid that minimizes Formula (Equation 4.7) with a

greedy algorithm detailed in Algorithm 4. Instead of exhaustively evaluating all possible

combinations of pm × pn = p, the greedy algorithm starts with a 1D row partitioning and

iteratively increases pn while calculating the communication size using Formula (Equa-

tion 4.7). Importantly, it maintains pn as a factor of p through this process. Algorithm 4

computes a new p′m-way 1D partition by merging multiple contiguous row blocks of the ini-

tial p-way 1D partitioning. This way of merging matrix blocks can, but not always, reduce

the cost of replicating the rows of matrix B (the first term in the RHS of Formula (Equa-
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tion 4.7)). If the matrix is derived from a structural grid, merging row blocks corresponding

to adjacent subdomains can better reduce the communication costs.

In some cases, CRP-SpMM may reduce to either a 1D m-parallelization or a 1D n-

parallelization. Let ps denote the smallest prime factor of p. By using Formula (Equa-

tion 4.7), if S(p/ps, ps) > S(p, 1), CRP-SpMM will reduce to a 1D m-parallelization.

Conversely if S(1, p) < S(ps, p/ps), CRP-SpMM will reduce to a 1D n-parallelization.

This observation also gives rise to Corollary 1.

Corollary 1. If the SpMV can be computed in a matrix-free way (for example, stencil

calculation), f(A) = 0 and pn = min(p, n) minimizes the SpMV / SpMM communication

cost.

Algorithm 4 Computing a 2D process grid for CRP-SpMM
Input: SpMM problem dimensions m, k, n, sparsity matrix A, number of processes p, a

1D row partitioning {Ii}pi=1

Output: A 2D process grid pm × pn = p
1: Set: pm = p, pn = 1, and pf = −1.
2: Compute Sopt = S(pm, pn) using Formula (Equation 4.7).
3: Prime factorization p =

∏s
i=1 pi, pi ≥ pi+1.

4: for i = 1 to s do
5: if (pi == pf ) or (pnpi > n) then continue to next i.
6: Set: p′n = pnpi, p′m = p/p′n.
7: Merge p′n contiguous row blocks of {Ii}pi=1 to get a new p′m-way 1D partition.
8: Compute S(p′m, p

′
n) using Formula (Equation 4.7).

9: if S(p′m, p′n) < Sopt then
10: Update: pm = p′m, pn = p′n, Sopt = S(p′m, p

′
n).

11: Set pf = −1.
12: else
13: Set pf = pi.
14: end if
15: end for

After selecting a pm× pn process grid, each of the pm processes in process grid column

j computes a column block C(:, Jj) = A × B(:, Jj) using 1D row-wise parallel SpMM.

The matrix partitionings and communication operations for a 2D mn-parallel SpMM are

detailed in Algorithm 5. Steps 1-3 in Algorithm 5 are conceptual and do not involve any
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Algorithm 5 SpMM with a 2D mn-parallelization
Input: A 1D or 2D process grid pm × pn, sparse matrix A and dense matrix B distributed

on p processes.
Output: 1D or 2D partitioned C = A×B distributed on p processes

1: Partition A into pm row blocks s.t. nnz(A(Ii, :)) ≈ nnz(A)/pm, 1 ≤ i ≤ pm.
2: Partition B into a pm × pn grid of equal size sub-matrices s.t. B(Ii, Jj) has k/pm rows

and n/pn columns.
3: Partition C into a pm×pn grid of different size sub-matrices s.t. C(Ii, Jj) has the same

rows as A(Ii, :) and the same columns as B(:, Jj).
4: if pn > 1 then process P (i, j) replicates A(Ii, :) in process grid row P (i, :) using

allgather operation.
5: Process P (i, j) packs local B matrix rows needed by other processes in process grid

column P (:, j) posts non-blocking send and receive operations.
6: Process P (i, j) multiples the diagonal block of A(Ii, :) with the local B matrix rows.
7: Process P (i, j) waits for all non-blocking receive operations to complete.
8: Process P (i, j) multiples the off-diagonal block of A(Ii, :) with the received B matrix

rows.

actual operation. The distributions of A, B, and C adhere to the requirements discussed

in Section 4.3.2. The driver algorithm of CRP-SpMM may adjust the matrix distribution

after computing a 2D process grid or redistribute A and B before calling Algorithm 5.

Steps 5-8 in Algorithm 5 constitute a standard 1D m-parallelization SpMM. Additionally,

Algorithm 5 assumes that all processes possess sufficient memory to store all required ma-

trix blocks. The topic of incorporating memory constraints in our communication-reduced

algorithm is left as a topic for future study.

4.4.2 Complexity Analysis of CRP-SpMM

In this section, we will analyze the number of arithmetic operations, memory usage, com-

munication size, and communication latency of CRP-SpMM. We assume that min(pm, pn) >

1, and we further assume butterfly network collectives for communication size and latency

analysis [28], which are optimal or near-optimal in the α-β model. The cost of collective

operations (assuming “large” messages) used in the analysis are listed here, where n is the

message size, P is the number of processes, α is network latency, and β is the inverse of
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network bandwidth:

Tallgather(n, P ) = α log2(P ) + βn
P − 1

P
,

Talltoall(n, P ) = α(p− 1) + βn.

We define the number of arithmetic operations F and the memory usage M as the max-

imum number of floating point operations and the maximum number of matrix elements

(where each A matrix non-zero is counted as f(A) elements), respectively, on any pro-

cess in Algorithm 5. After step 5, process P (i, j) stores A(Ii, :) and B(nAi, Jj). Since

|nAi| ≤ k always holds, we have

F = O
(
nnz(A)n

p

)
, (4.8)

M = O
(
f(A) · nnz(A)

pm
+

kn

pn

)
. (4.9)

We define the communication size Q and the communication latency L as the maxi-

mum number of matrix elements transferred and the maximum number of messages sent,

respectively, by any process in Algorithm 5. Process P (i, j) needs to receive nnz(A)/pm

A matrix elements in the allgather operation and receive |nAi|n/pn ≤ kn/pn B matrix

elements in the alltoall operation, which gives

Q = O
(
f(A) · nnz(A)

pm
· pm − 1

pm
+

kn

pn

)
, (4.10)

L = O (log2(pn) + pm) . (4.11)

4.4.3 CRP-SpMM and Shared-Memory Optimizations

CRP-SpMM focuses on minimizing inter-process communication costs in distributed-memory

parallel SpMM. Its process grid geometry optimization is hardware-independent, present-

ing both advantages and disadvantages. On the positive side, CRP-SpMM can collabo-
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rate with hardware-oriented optimizations, such as techniques for enhancing vectorization,

register and cache reuse, and ensuring performance portability. Some shared-memory opti-

mization techniques, including novel sparse matrix storage schemes and inspector-executor

(I-E) frameworks, also leverage sparsity structures to enhance SpMV and SpMM perfor-

mance. These techniques run in parallel with the process grid geometry optimization in

CRP-SpMM, offering the potential for a more substantial performance improvement when

combined. However, on the negative side, there may be instances where CRP-SpMM deter-

mines a parallelization scheme in which each process only computes with a small number

of input vectors in local SpMM. This scenario might be unfavorable for vectorization and

could adversely impact the performance of local SpMM calculations.

4.4.4 Implementation of CRP-SpMM

We implement CRP-SpMM in C + MPI + MKL. We use the widely used compressed

sparse row (CSR) format for matrix A with a 4-byte integer data type (int) for indices

and an 8-byte floating point data type (double) for non-zeros. B and C are stored and

used in row-major style. We note that CRP-SpMM can use other formats for A, B, and

C. Algorithm 5 uses MPI Iallgatherv and overlaps multiple non-blocking operations

to better utilize the network bandwidth (a technique proposed in [32]). Algorithm 5 step 5

uses MPI Isend and MPI Irecv. For local SpMM computation, we use the MKL I-E

sparse BLAS routine mkl sparse d mm. We re-index the local A matrix block’s columns

to reduce memory usage and improve memory access locality. For example, before column

re-indexing, a process needs to compute a local SpMM

0 a b 0 c 0 d 0

0 0 e 0 f 0 0 g

× [1, 2, 3, 4, 5, 6, 7, 8]T.
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After column re-indexing, this process computes

a b c d 0

0 e f 0 g

× [2, 3, 5, 7, 8]T.

Our 1D m-parallelization SpMM implementation (including re-indexing) is very similar to

the parallel SpMV implementation in PETSc (Section 4.1 in [91]), while the only difference

is that the PETSc’s implementation uses the PETSc scalable communication layer instead

of MPI routines.

4.5 Numerical Experiments

All experiments in this section are performed on the Georgia Tech PACE-Phoenix cluster.

Each CPU node has two CPU sockets and 192 GB DDR4 memory. Each socket has an

Intel Xeon Gold 6226 12-core processor. The compute nodes are connected with 100 Gbps

InfiniBand networking.

We use 19 sparse matrices from different fields in numerical experiments. Table 4.2

shows the properties of these matrices. Matrix Amazon is from [57], while all other matri-

ces are downloaded from the SuiteSparse Matrix Collection [97].

4.5.1 Reducing Communication Sizes with 2D Parallelization

In this section, we evaluate the theoretical communication sizes of 1D m-parallelization and

2D mn-parallelization SpMM to illustrate the impact of reducing SpMM communication

sizes with 2D parallelization. We utilize Formula (Equation 4.7) with r(A) = 1 and f(A) =

1.5 for computing communication sizes.

We first consider the first eight matrices in Table 4.2, which are symmetric matrices

obtained from 3D structural problems discretized by the finite element method (FEM).

Typically, these matrices are partitioned using a domain decomposition method or a graph

partitioning algorithm. For our study, we employ the widely used METIS library [63] to
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Table 4.2: Properties of sparse matrices used in numerical experiments.

Matrix Name
# rows # cols nnz(A) Avg. nnz

Problem Kind×106 ×106 ×106 per row
PFlow 742 0.7 0.7 37 50

3D structural

Serena 1.4 1.4 65 46
Geo 1438 1.4 1.4 63 44
StocF-1465 1.5 1.5 21 14
Long Coup dt6 1.5 1.5 87 59
Hook 1498 1.5 1.5 61 41
Flan 1565 1.6 1.6 117 75
Bump 2911 2.9 2.9 128 44
com-Orkut 3.1 3.1 234 76 NNMF
Amazon 14.3 14.3 230 16 GNN
reddit 0.2 0.2 115 495 GNN
cage15 5.1 5.1 99 19 DNA
kmer V2a 55.0 55.0 117 2 Protein
delaunay n23 8.4 8.4 50 6 Graph
wb-edu 9.8 9.8 57 6 Graph
nlpkkt160 8.3 8.3 229 28 Optimization
Hardesty3 8.2 7.6 40 5 Visualization
ss 1.6 1.6 35 22 Semiconductor
circuit5M 5.6 5.6 59 11 Circuit

76



compute 1D row partitionings of these eight matrices. We implemented Algorithm 4 using

C + OpenMP. Both METIS and our code are compiled using the Intel C/C++ compiler

v19.1, and the tests are performed on a single computing node. The last 11 matrices in

Table 4.2 come from different areas and lack a mesh or grid with a physical structure. As

these matrices do not originate from a structured mesh or grid, we refrain from utilizing

METIS for calculating 1D row partitioning (although some symmetric matrices may still

employ METIS for this purpose). Instead, we use the simple 1D partitioning approach

mentioned in Section 4.4.1.

Table 4.3 lists the communication sizes of 1D m-parallelization and 2D mn-parallelization

SpMM with p = 256 processes and n = 1024 input vectors. Despite METIS providing

high-quality 1D row partitionings for these sparse matrices derived from 3D FEM, Algo-

rithm 4 demonstrates the capability to find better 2D process grid dimensions, resulting in

further reductions in SpMM communication sizes. If a more effective algorithm for com-

puting 1D row partitionings for different pm values (Algorithm 4 step 7) is employed, the

communication sizes of mn-parallelization can be further decreased. The cost of deter-

mining a 2D process grid is negligible in comparison to the cost of computing a 1D row

partitioning using METIS.

On non-FEM matrices, using a 2D parallelization scheme significantly reduces the total

communication sizes for matrices com-Orkut, Amazon, reddit, and ss. Additionally,

Algorithm 4 outputs a 1D process grid for matrices delaunay n23 and wb-edu. If a

hypergraph partitioning algorithm is used for computing 1D row partitionings, determining

the baseline p-way 1D row partitioning might be computational expensive. However, the

cost of computing optimized 2D process grid dimensions using Algorithm 1 is likely to be

negligible when compared to the cost of computing hypergraph partitioning.

Figure 4.2 shows the changes of 2D process grid dimensions pm × pn = p concern-

ing the number of processes (p) and input vectors (n) for the StocF-1465 matrix. The

results in this figure align with Assumption 2. The optimized 2D process grid dimension
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Table 4.3: The 1D partitioning (“PT”), 2D grid search (“GS”) timings (in seconds), and
communication sizes (“CS”, number of double-precision words) of 1D m-parallelization
(“m-para.”) and 2D mn-parallelization (“mn-para.”) for p = 256 processes and n = 1024
input vectors.

Matrix 1D PT 2D GS m-para. mn-para.
Name Time (s) Time (s) CS (×106) pm × pn CS (×106)

PFlow 742 8.08 0.01 359 128× 2 315
Serena 5.78 0.01 666 128× 2 625
Geo 1438 5.08 0.02 674 128× 2 630
StocF-1465 4.14 0.01 442 64× 4 361
Long Coup dt6 7.10 0.02 836 128× 2 802
Hook 1498 5.13 0.01 620 128× 2 557
Flan 1565 6.90 0.02 604 128× 2 603
Bump 2911 13.22 0.04 1160 128× 2 1136
com-Orkut 0.01 0.53 107752 8× 32 25760
Amazon 0.01 2.17 120815 4× 64 39391
reddit 0.01 0.14 34333 16× 16 5893
cage15 0.01 0.15 29125 8× 32 11803
kmer V2a 0.01 1.83 115058 1× 256 44835
delaunay n23 0.01 0.13 10070 256× 1 10070
wb-edu 0.01 0.13 737 256× 1 737
nlpkkt160 0.01 0.24 22121 32× 8 12566
Hardesty3 0.01 0.17 8805 8× 32 3844
ss 0.01 0.06 6588 32× 8 2655
circuit5M 0.01 0.11 22395 16× 16 19821
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experiences more rapid changes as n increases, primarily because the communication size

for replicating B matrix rows increases proportionally to n. Similar observations can be

applied to other sparse matrices with comparable application backgrounds.
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Figure 4.2: Process grid dimensions for the StocF-1465 matrix with different numbers
of processes (p) and input vectors (n).

4.5.2 Parallel Performance of Parallel SpMM Algorithms

We test and compare five distributed-memory SpMM algorithms. The 1.5D A-stationary,

2D A-stationary, and 2D C-stationary algorithms are implemented using the bulk syn-

chronous parallel model in the Combinatorial BLAS (CombBLAS) 2.0 library [86, 98].

We include our implementation of 1D m-parallelization SpMM and CRP-SpMM in the

evaluation. CRP-SpMM directly reuses the 1D m-parallelization SpMM code. The CTF

and PETSc libraries support distributed-memory parallel SpMM but are not specifically

optimized for this task. As we explained in Section 4.2.3, the arrow matrix decomposition

method is hard to use in practice, so we do not test it. CombBLAS stores sparse matrices in

the compressed sparse column (CSC) format and only supports a square process grid. We

compile CombBLAS and our code using the Intel C/C++ compiler v19.1 with optimization

flags “-xHost -O3”. Both codes use Intel MKL v19.1 for shared-memory parallel SpMM
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and MVAPICH2 2.3.6 for the MPI backend.

Table 4.4 lists the single SpMM execution time of all tested codes on 128 nodes for

all matrices in Table 4.2. The running time of calculating 1D baseline partitioning and

searching for 2D grid are also listed. All programs use 2 MPI processes per node. Each

MPI process uses 12 OpenMP threads and is bonded to one CPU socket. CombBLAS uses

a 16 × 16 process grid for all matrices. Both 1D m-parallelization and CRP-SpMM use

METIS for the first 8 matrices, and both algorithms use a simple 1D row partitioning for the

last 11 matrices. One-time initialization costs, including initializing MPI communicators

and allocating work buffers, are not included in the reported values.

Table 4.4: Single SpMM execution time (“RT”) of the best CombBLAS implementation
(“CB-best”), 1D m-parallelization (“1D m-para.”), and CRP-SpMM on 128 nodes with 2
MPI processes per node (p = 256) and n = 256 input vectors for all matrices in Table 4.2.
The running time of calculating 1D baseline partitioning (“PT”) and searching for 2D grid
(“GS”) are also listed. All timings are in seconds.

Matrix CB-best 1D m-para. CRP-SpMM
Name RT (s) PT (s) RT (s) pm × pn GS (s) RT (s)
PFlow 742 0.79 8.08 0.01

256× 1

0.01 0.01
Serena 1.07 5.78 0.01 0.01 0.01
Geo 1438 1.22 5.08 0.01 0.02 0.01
StocF-1465 0.55 4.14 0.01 0.01 0.01
Long Coup dt6 1.59 7.10 0.02 0.02 0.02
Hook 1498 1.19 5.13 0.01 0.01 0.01
Flan 1565 2.20 6.90 0.01 0.02 0.01
Bump 2911 2.46 13.22 0.01 0.04 0.01
com-Orkut 2.31 0.01 0.62 16× 16 0.30 0.30
Amazon 2.85 0.01 0.69 16× 16 0.95 0.42
reddit 0.59 0.01 0.21 32× 8 0.05 0.07
cage15 2.26 0.01 0.08 32× 8 0.10 0.07
kmer V2a 5.99 0.01 0.69 32× 8 1.05 0.70
delaunay n23 1.97 0.01 0.17 256× 1 0.10 0.17
wb-edu 2.25 0.01 0.02 256× 1 0.12 0.02
nlpkkt160 4.65 0.01 0.26 64× 4 0.17 0.17
Hardesty3 1.40 0.01 0.03 16× 16 0.13 0.03
ss 0.60 0.01 0.04 64× 4 0.02 0.03
circuit5M 4.43 0.01 (N/A) 256× 1 0.07 (N/A)

Overall, both 1D m-parallelization and CRP-SpMM greatly outperform CombBLAS
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across all tested matrices. As discussed in Section 4.2.3, the parallel SpMM algorithms

implemented in CombBLAS are modified from parallel GEMM algorithms. For matrices

wb-edu, nlpkkt160, cage15, and Hardesty, CombBLAS reported very high load

imbalance ratios (defined as pmax(nnzi)/nnz, where nnzi is the number of non-zeros

on process i) ranging from 15 to 18, which are much higher than other non-FEM matri-

ces. Corresponding, the speedups of CRP-SpMM over CombBLAS on these four matrices,

ranging from 28× to 112×, are also much larger than the speedups on other non-FEM ma-

trices. These results show that CombBLAS suffers from load imbalance and unnecessary

communications due to non-uniform non-zero distributions of A. Selvitopi et al. im-

plemented not only the bulk-synchronous version of these algorithms in CombBLAS, but

also the asynchronous version using remote direct memory access (RDMA) operations for

SpMM on GPUs [86]. Their work reveals multiple performance tradeoffs for SpMM on

GPUs. Since our work does not involve GPUs, the subsequent discussion will focus on

comparing 1D m-parallelization and CRP-SpMM.

For the first 8 matrices, given that METIS already provides high-quality 1D row parti-

tionings and the number of input vectors is not sufficiently large, CRP-SpMM reduces to

1D m-parallelization. We also tested n = 1024 for these 8 matrices (results omitted) on

256 nodes to evaluate the performance difference between 1D m-parallelization and the

2D mn-parallelization in CRP-SpMM. However, the running time of all 8 matrices under

both parallelization schemes is remarkably small, falling within the range of 0.01 to 0.02

seconds. Such minuscule timings can be easily influenced by network performance fluc-

tuations. Meanwhile, in Table 4.3, the differences in communication sizes between 1D

and 2D parallelization schemes are marginal, making it challenging to discern a impact on

execution time.

For the last 11 matrices, where both 1D m-parallelization and CRP-SpMM uses the

same simple 1D row partitioning method, the speedup of CRP-SpMM over 1D m-parallelization

aligns with the communication size comparison in Table 4.3. Notably, matrices com-Orkut,
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Amazon, reddit, and ss exhibit substantial speedups with CRP-SpMM over 1D m-

parallelization. Additionally, two special cases are observed. For the kmer V2a matrix,

Table 4.3 shows that the communication size of 2D mn-parallelization is only slightly

smaller than 1D m-parallelization. However, 2D mn-parallelization involves more com-

munication operations and incurs a larger overhead cost. The circuit5M matrix has

certain rows that contain over 5× 106 non-zeros, resulting in one or more processes having

a B matrix block larger than 4GB for local SpMM, causing a crash in the SpMM routine

within Intel MKL.

Figure 4.3 shows the CombBLAS, 1D m-parallelization, and CRP-SpMM strong scal-

ing results on matrices com-Orkut, cage15, and ss. CRP-SpMM runs much faster than

CombBLAS on all three matrices. On the com-Orkutmatrix, the CRP-SpMM communi-

cation size for using 128 nodes is slightly larger than that of using 98 nodes, which explains

the increased runtime on 128 nodes. On the cage15 matrix, CRP-SpMM uses pn = 4 and

pn = 9 for 8 and 18 nodes respectively, leading to a significant reduction of communica-

tion sizes compared to 1D m-parallelization. For 32 and more nodes, CRP-SpMM uses

pn = 8, the communication size difference between CRP-SpMM and 1D m-parallelization

becomes smaller. Therefore, the speedup of CRP-SpMM over 1D m-parallelization also

becomes smaller. On the ss matrix, the difference in communication size and performance

between CRP-SpMM and 1D m-parallelization becomes larger on 98 and 128 nodes.

Figure 4.4 provides the runtime breakdown for 1D m-parallelization and CRP-SpMM

in tests on 128 nodes for matrices com-Orkut, cage15, and ss. In both parallelization

schemes, communication costs associated with replicating A and B dominate the overall

runtime, with the communication costs of mn-parallelization being smaller than those of

m-parallelization. On matrices com-Orkut and ss, we observe large communication size

imbalances in the 1D m-parallelization reflected by the difference between the averaged

and maximum running time of “Pack & Isend B”. CRP-SpMM has a less severe load

imbalance since it uses smaller pm values than 1D m-parallelization. This also shows the
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Figure 4.3: The CombBLAS, 1D m-parallelization (“1D m-para.”), and CRP-SpMM
strong scaling results on matrices com-Orkut, cage15, and ss. Each node runs 2 MPI
processes. CombBLAS always uses a square process grid.
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Figure 4.4: The 1D m-parallelization (“1D”) and CRP-SpMM (“2D”) runtime (in seconds)
breakdowns for 128 node tests on matrices com-Orkut, cage15, and ss. The “avg.”
and “max” labels refer to the average and maximum value over all processes. “Replicate
A”, “Pack & Isend B”, and “Wait Irecv B” refers to steps 4, 5, and 7 in Algorithm 5,
respectively. “Local SpMM” refers to the total runtime of steps 6 and 8 in Algorithm 5.
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necessary of using a better 1D partitioning algorithm to balance the communication sizes

on different processes. Additionally, we observe that the cost of packing B matrix data

could surpass the cost of local SpMM calculations. This issue can be alleviated by using

MPI derived data types and other low-level performance optimizations. As our primary

focus is not on low-level performance engineering in this work, we leave this issue for

future study.

4.6 Conclusions and Future Work

In this study, we tackle the optimization of process grid geometry to harness different lev-

els of parallelism, aiming to reduce the communication costs of parallel SpMM. We first

analyze the design space of parallel SpMM algorithms and formulate communication cost

models for different parallelization schemes. Based on these cost models, we propose an

algorithm to optimize the process grid geometry. Our algorithm begins with a 1D row parti-

tioning of the sparse matrix, generated through (hyper)graph partitioning or other methods.

Subsequently, it employs a greedy algorithm to explore and discover more effective 2D

process grid geometries. Numerical experiments show that our algorithm can find better

process grid geometries, even when high-quality 1D row partitionings are used as base-

lines. Notably, it significantly reduces the communication sizes of SpMM in certain cases.

For sparse matrices derived from structural grids or meshes and a small or moderate num-

ber of input vectors, using a 1D row parallelization with a graph partitioning or a domain

decomposition partitioning is usually good enough. For a large number of input vectors or

sparse matrices that arise in other areas, our algorithm is more likely to reduce the commu-

nication sizes. Furthermore, our implementation demonstrates a substantial performance

advantage over existing distributed-memory parallel SpMM codes across a diverse range of

process numbers and sparse matrices from different fields, exhibiting various sparsity pat-

terns. Moreover, our theoretical analysis and experimental data offer insights into potential

topics for future research.
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The first topic involves designing a fast algorithm for computing 1D row partitionings

for different pm values (Algorithm 4 step 7) using an existing 1D p-way row partitioning.

This may further reduce the communication sizes of mn-parallelization.

The second topic involves extending the parallel algorithm to support generalized 3D

parallelization. This requires a careful redesign and implementation of the process grid

geometry search algorithm to replace Algorithm 4, as well as the communication patterns

in SpMM.

The third topic involves enhancing the performance of parallel SpMM through low-

level optimizations. Leveraging MPI derived data types and/or MPI one-sided communi-

cation operations may help alleviate the overhead associated with manually packing and

unpacking B matrix rows.

The code of this work is available in open-source form at https://github.com/scalable-matrix/

CRP-SpMM. The methods proposed in this work and our codes can be integrated into

higher-level algorithm libraries, for example, parallel iterative eigenvalue solver and non-

negative matrix factorization libraries.

86

https://github.com/scalable-matrix/CRP-SpMM
https://github.com/scalable-matrix/CRP-SpMM


CHAPTER 5

H2PACK: HIGH-PERFORMANCE H2 MATRIX PACKAGE

5.1 Introduction

Many problems in scientific computing and data analytics, such as particle simulations

with long-range interactions, the numerical solution of integral equations, and Gaussian

process modeling led to dense kernel matrices. Given two sets of points, X and Y , and

a non-compact kernel function K(x, y), the kernel matrix K(X, Y ) has entries defined as

K(xi, yj) with all (xi, yj) ∈ X × Y . Usually, kernel matrices have block low-rank struc-

ture, i.e., certain blocks of the matrices are numerically low-rank. For such a kernel matrix,

representing these blocks in low-rank form gives a rank-structured matrix representation

that asymptotically reduces the quadratic cost of matrix storage and matrix-vector multi-

plication. Different kernel matrices can be effectively stored in different rank-structured

matrix representations such as H [99, 100], H2 [101, 102], and HSS [103]. In this work,

we focus on the development of a library for efficiently constructing and using H2 matrix

representations defined by non-oscillatory, translationally-invariant kernel functions with

points in low-dimensional space (e.g., 2D or 3D).

H2 matrix representations are constructed by compressing specific matrix blocks into

low-rank form via a nested approach. The compression of these blocks can be computed

either analytically based on degenerate approximations of the kernel function such as mul-

tipole expansions and polynomial expansions, or algebraically based on matrix decompo-

sition methods such as SVD, QR, and ACA [104]. It is worth noting that, when analytic

compression methods are used, the fast matrix-vector multiplication of the constructed H2

matrix can be viewed as an algebraic variant of the fast multipole method (FMM) [105,

106, 107, 108]. Compared to algebraic compression, analytic compression usually requires
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less intermediate storage and computation but is limited to specific kernel functions and

can give an approximation rank much larger than the numerical rank of the matrix block to

be compressed. Algebraic compression, instead, is usually more effective in terms of the

range of applicability and optimality of the approximation rank. Due to these differences,

the matrix-vector multiplication with an H2 matrix constructed by algebraic methods is

usually faster than FMM, since a lower-rank approximation leads to more cost reduction in

the multiplication. As a sacrifice, algebraic methods usually lead to much more expensive

H2 matrix construction than analytic methods. For example, simply evaluating all matrix

entries has a quadratic cost, making many algebraic methods such as SVD unfavorable.

To balance between analytic methods and algebraic methods, we use a hybrid analytic-

algebraic compression method called the proxy point method [109] to construct H2 matrix

representations. For kernel functions from potential theory, such as the Laplace and Stokes

kernels, Martinsson and Rokhlin [110] introduced the proxy surface method to efficiently

compress specific kernel blocks into a low-rank form called interpolative decomposition

(ID) [111]. Two variants of the proxy surface method were proposed later by Corona [112]

and Minden [113]. All three methods belong to the class of the proxy point methods that

has been formalized and studied in recent work [109]. Compared to algebraic methods,

the proxy point method avoids forming a kernel block explicitly before compressing it and

also requires far less data communication in parallel H2 matrix construction. Compared

to analytic methods, the proxy point method can obtain better approximation ranks and

is kernel-independent. As a result, it can efficiently construct an H2 matrix representa-

tion with linear complexity, while the constructed H2 matrix can have faster matrix-vector

multiplications than FMM. Another common hybrid analytic-algebraic approach is to com-

bine an analytic method with algebraic recompression [114, 115, 116]. Such an approach

gives better approximation rank but is also restricted to certain kernels, like analytic meth-

ods. In comparison, the proxy point method incorporates the kernel function numerically

when constructing the H2 matrix representation. This allows the construction to be kernel-
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independent.

H2Pack is a shared-memory parallel library for kernel matrices based on constructing

H2 matrix representations using the proxy point method. The kernel functions must be

non-oscillatory and translationally-invariant (i.e., K(x, y) = k(x − y) with a univariate

function k(·)) with points in low-dimensional space. H2Pack library works for both scalar

and tensor kernel functions. Presently, the library further requires the input kernel function

to be symmetric, i.e, K(x, y) = K(y, x), and the kernel matrix to be defined by one set of

points X , i.e., K(X,X). These two requirements can be easily lifted via a simple extension

of H2Pack which will be addressed in the next version.

More precisely, H2Pack implements the following two components:

• H2 matrix construction based on the proxy point method with inputs being a kernel

function K(x, y), a set of points X , and an error threshold for the low-rank approxi-

mations;

• H2 matrix-vector multiplication.

We optimize H2Pack from both the algorithm and software perspectives. Different par-

allelization and load-balancing strategies are applied for different computation phases in

H2Pack. Moreover, two running modes for H2Pack are available to adapt to different com-

puting platforms and different problem settings for better performance. The ahead-of-time

mode precomputes and stores all the components of an H2 matrix. The just-in-time mode

calculates a large portion of the components dynamically when needed in H2 matrix-vector

multiplication. These two modes provide a trade-off between storage and computation. The

performance difference between the two modes depends on the memory bandwidth, CPU

speed, and the complexity of the kernel function evaluations. It is worth noting that this

two-mode approach has been proposed before in Refs [117, 116]. Lastly, we also exploit

intrinsic functions for better vectorization to further improve the performance of H2Pack

on multi-core and many-core processors.
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Our numerical tests with H2Pack show that its H2 matrix construction cost is only

around 5 to 15 times the corresponding H2 matrix-vector multiplication cost. Comparisons

of H2Pack with two state-of-the-art FMM libraries, PVFMM [118] and FMM3D [119],

show that H2Pack has asymptotically more expensive H2 matrix construction but faster H2

matrix-vector multiplications. More precisely, the H2 matrix construction cost in H2Pack

is similar to the FMM setup costs in FMM3D and PVFMM for a low or moderate relative

multiplication accuracy, e.g., 10−5 and 10−8, and is just 2 to 5 times more expensive for a

high relative multiplication accuracy, e.g., 10−11. Meanwhile, the approximation ranks of

blocks in H2Pack are 5 to 10 times smaller than those in PVFMM and FMM3D. As a result,

the H2 matrix-vector multiplication in H2Pack is 1.5 to 5 times faster than in PVFMM and

5 to 25 times faster than in FMM3D in various tests. In practice, H2Pack is ideal for

problems where many matrix-vector multiplications are required per configuration of data

points, e.g., numerical solution of integral equations and Gaussian process modeling, so

that the relatively expensive H2 matrix construction cost can be amortized.

Related work There are several libraries for FMM and its variants. FMM3D [119] im-

plements the classical FMM [106, 120] for three key kernel functions in 3D from po-

tential theory, the Laplace, Helmholtz, and Stokes kernels. PVFMM [118] implements

the kernel-independent FMM [107] and works for kernel functions from potential the-

ory. BBFMM3D [121] implements the black-box FMM [108] and works for smooth,

translationally-invariant kernel functions. All these FMM libraries support OpenMP shared

memory parallelization. PVFMM further supports MPI distributed memory parallelization

and GPU acceleration of major FMM subroutines.

There are also several libraries for working with rank-structured matrices. H2Lib [122]

constructs H2 matrix representations algebraically but only works for matrices from the

boundary element method whose entries are kernel-defined interactions between compact

basis functions in integral form. H2Lib supports OpenMP shared memory parallelization.
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SMASH [116] uses a heuristic hybrid compression method to construct both H2 and HSS

matrix representations for kernel matrices. SMASH is written in MATLAB and its C lan-

guage implementation is still under development. STRUMPACK [123, 124] uses a ran-

domized algebraic compression method to efficiently construct HSS matrix representations

for a general class of dense matrices. STRUMPACK supports MPI distributed memory

parallelization for fast matrix-vector multiplications and fast matrix solve. Recently, an H2

matrix library for GPUs has also been developed [125].

5.2 H2 matrix representation and H2 matrix-vector multiplication

Consider a kernel matrix K(X,X) defined by a non-oscillatory kernel function K(x, y)

that is translationally-invariant and symmetric, and a set of points X in a low-dimensional

space. This section describes an H2 matrix representation of K(X,X), H2 matrix con-

struction based on the proxy point method, and H2 matrix-vector multiplication. The fol-

lowing discussion applies to both scalar and tensor kernel functions K(x, y), e.g., both the

Laplace and the Stokes kernels.

5.2.1 H2 matrix representation

Interpolative decomposition

An interpolative decomposition (ID) [126, 111] represents or approximates a matrix A ∈

Rn×m in the low-rank form UAJ , where U ∈ Rn×k has bounded entries, AJ ∈ Rk×m

contains k rows of A, and k is the rank. An ID approximation defined this way is said to

have error below the error threshold ε0 if the 2-norm of each row of A− UAJ is bounded

by ε0. Using an algebraic approach, an ID approximation with a given rank or a given error

threshold can be calculated using the strong rank-revealing QR (SRRQR) decomposition

[111] or using the pivoted QR decomposition. Specifically, an ID approximation of a kernel

matrix block K(X0, Y0) can be written as K(X0, Y0) ≈ UK(Xid, Y0) where K(Xid, Y0)

contains a subset of the rows in K(X0, Y0) and Xid is a subset of X0.
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Hierarchical partitioning of X and K(X,X)

To construct an H2 matrix representation, the first step is to hierarchically partition the

points in X . Assume X is in a d-dimensional space and let B be a box with equal-length

edges that encloses X . The box B is partitioned into 2d smaller same-sized boxes by

bisecting all its edges. Each smaller box is further partitioned recursively in the same way

until the number of points in a box is less than a prescribed constant. This hierarchical

partitioning of B can be represented by a 2d-ary partition tree T whose nodes correspond

to the boxes. We define the root node of T to be at level 0, its children nodes to be at level

1, etc. We also define the leaf level to be level L.

Each level of the partition tree defines a non-overlapping partitioning of the set of points

X . This partitioning is defined using the set of nodes at a given level of the partition tree.

To generalize the concept of the set of nodes at a given level to the case of possibly non-

perfect partition trees, let level+(l) denote the union of all the nodes in level l and all the

leaf nodes above level l (toward the root). The caption of Figure 5.1 gives examples of

level+(l) for an example partition tree.

Now, let Xi denote the set of points lying in box i and corresponding to node i in the

tree. At any level l, {Xi}i∈level+(l) defines a non-overlapping partitioning of the set of points

X , i.e.,

Xi ∩Xj = ∅ for distinct i, j ∈ level+(l) and ∪i∈level+(l) Xi = X.

For the kernel matrix itself, {K(Xi, Xj)}i,j∈level+(l) defines a non-overlapping partitioning

of K(X,X). See Figure 5.1 for an example of a partition tree and the associated matrix

partitioning at each level.
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Figure 5.1: Illustration of a 3-level hierarchical partitioning of a set of points X in 1-
dimensional space and the associated partitioning of a kernel matrix K(X,X). In this par-
tition tree, level+(1) = {1, 2}, level+(2) = {3, 4, 5, 6}, and level+(3) = {7, 8, 9, 10, 5, 6}.
In each level l, K(X,X) is partitioned into non-overlapping blocks K(Xi, Xj) with
i, j ∈ level+(l).

Inadmissible, admissible, and partially admissible blocks

In an H2 matrix representation, a kernel block K(X∗, Y∗) is considered numerically low-

rank if X∗ is in a box and Y∗ is in the far field of the box. The far field of a box is defined

as the area of all the boxes that are least one box width away from the box. For any box i

in some level l, we split boxes in level+(l) into two subsets Fi and Ni as

Fi = {k ∈ level+(l) | box k is in the far field of box i} and Ni = level+(l) \ Fi.

Let Yi = ∪k∈Fi
Xk be the set of all points in the far field of box i. Then, K(Xi, Yi)

for each box i with nonempty Fi is considered to be numerically low-rank. Thus, the

numerically low-rank blocks at each level can be denoted as K(Xi, Yi) or K(Yi, Xi) for all

nodes i ∈ level+(l). Note that if K(X,X) is symmetric, then K(Yi, Xi) = K(Xi, Yi)
T .

See Figure 5.2 for an illustration of these low-rank blocks.

A block K(Xi, Xj) that is contained in the low-rank blocks K(Xi, Yi) or K(Yj, Xj) is

thus also low-rank. Based on this observation, the blocks in {K(Xi, Xj)}i,j∈level+(l) can be

categorized into three classes:

• inadmissible blocks, if K(Xi, Xj) is not within K(Xi, Yi) and not within K(Yj, Xj)

(equivalent to Xj ∩ Yi = ∅ and Xi ∩ Yj = ∅);
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• admissible blocks, if K(Xi, Xj) is within both K(Xi, Yi) and K(Yj, Xj) (equivalent

to Xj ⊆ Yi and Xi ⊆ Yj);

• partially admissible blocks, if K(Xi, Xj) is within K(Xi, Yi) but not within K(Yj, Xj)

(equivalent to Xj ⊆ Yi and Xi ∩ Yj = ∅), or if K(Xi, Xj) is not within K(Xi, Yi)

but within K(Yj, Xj) (equivalent to Xj ∩ Yi = ∅ and Xi ⊆ Yj).

See the hatched block in Figure 5.2 for an example of a partially admissible block.

The concept of “partially admissible blocks” is new to the standard H2 matrix repre-

sentation. More details follow later in this section.

(a) blocks K(Xi, Yi) with i ∈ level+(l), l = 2 or 3 (b) blocks K(Yi, Xi) with i ∈ level+(l), l = 2 or 3

Figure 5.2: Illustrations of the low-rank blocks K(Xi, Yi) and K(Yi, Xi) for the partition
tree in Figure 5.1. The low-rank blocks are colored yellow for level 2 and green for level
3. For level 2, these blocks are labeled explicitly. In level 3, note that some of these blocks
are not contiguous. The hatched block K(X9, X5) is a partially admissible block since it is
within K(X9, Y9) in (a) but not within K(Y5, X5) in (b).

Compression of low-rank blocks

We express a low-rank approximation of each K(Xi, Yi) in an ID form,

K(Xi, Yi) ≈ UiK(X id
i , Yi), (5.1)

where X id
i is a subset of Xi and K(X id

i , Yi) contains a subset of the rows in K(Xi, Yi).

For a non-leaf box i with children {i1, i2, . . . , is}, the above ID approximation is formed
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and computed by a nested approach (to be described in Section 5.2.2) in an H2 matrix

representation. Precisely, the two ID components Ui and X id
i are recursively defined in the

nested form,

Ui =


Ui1

. . .

Uis

Ri and X id
i ⊆ X id

i1
∪X id

i2
. . . ∪X id

is ⊆ Xi, (5.2)

with some matrix Ri to be computed. Based on eq. (5.2), Ui for each non-leaf node is not

explicitly formed but can be recovered recursively from quantities at all the descendants of

node i.

Each inadmissible block K(Xi, Xj) is considered to be full-rank. Each admissible

block K(Xi, Xj) is numerically low-rank and can be compressed as

K(Xi, Xj) ≈ UiK(X id
i , X

id
j )U

T
j , (5.3)

based on the compression of K(Xi, Yi) and K(Yj, Xj) in eq. (5.1). Each partially admissi-

ble block K(Xi, Xj) can be compressed as

K(Xi, Xj) ≈

 UiK(X id
i , Xj) if K(Xi, Xj) is within K(Xi, Yi)

K(Xi, X
id
j )U

T
j if K(Xi, Xj) is within K(Yj, Xj)

, (5.4)

based on the compression of K(Xi, Yi) or K(Yj, Xj) in eq. (5.1).

H2 matrix representation

The H2 matrix representation of K(X,X) consists of three parts:

• dense inadmissible blocks K(Xi, Xj) with both i and j being leaf nodes.

• low-rank approximations eq. (5.3) of all the admissible blocks K(Xi, Xj) that are
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not contained in larger admissible or partially admissible blocks.

• low-rank approximations eq. (5.4) of all the partially admissible blocks K(Xi, Xj)

that are not contained in larger admissible or partially admissible blocks.

Denote the three sets of the node pairs (i, j) associated with the above three sets of kernel

blocks as D, A, and Ap, respectively. See Figure 5.3 for an example of these three sets of

blocks making up an H2 matrix representation. As can be easily verified, these three sets of

kernel blocks exactly form a non-overlapping partitioning of K(X,X). The components

stored by an H2 matrix include:

• Ui and X id
i for each leaf node i with nonempty Fi;

• Ri and X id
i for each non-leaf node i with nonempty Fi;

• intermediate blocks denoted by Bi,j for each (i, j) ∈ A ∪ Ap. Block Bij is one

of blocks K(X id
i , X

id
j ), K(X id

i , Xj), or K(Xi, X
id
j ) in the low-rank approximation

eq. (5.3) or eq. (5.4) of K(Xi, Xj);

• inadmissible blocks K(Xi, Xj) denoted by Di,j for each (i, j) ∈ D.

All the intermediate and inadmissible blocks can be computed using only the sets {Xi}

and {X id
i } for all i, which can be stored economically. Instead of precomputing and stor-

ing these intermediate and inadmissible blocks, they can be dynamically computed when

needed, using only {Xi} and {X id
i }. This provides a trade-off between storage and com-

putation.

More details on partially admissible blocks

In the standard H2 matrix representation, all the partially admissible blocks characterized

above are treated as admissible blocks and are compressed into the form eq. (5.3) (instead

of eq. (5.4)) where the corresponding Ui and X id
i for each node i are computed by the ID

approximation of K(Xi, Ỹi) with Ỹi defined as some superset of Yi.
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Figure 5.3: Illustration of a 3-level H2 matrix representation associated with the partition
tree in Figure 5.1. Inadmissible blocks are white in all levels, level 2 has admissible blocks
(yellow), and level 3 has admissible blocks (green) and partially admissible blocks (blue).
The H2 matrix representation is made up of specific inadmissible and admissible blocks in
levels 2 and 3 and the partially admissible blocks in level 3.

Taking the partially admissible block K(X5, X9) in Figure 5.3 as an example, we have

Y5 = X3, Ỹ5 = X3 ∪ X9, and Ỹ9 = Y9 = X7 ∪ X5 ∪ X6. Note that K(X5, X9) is within

K(X5, Ỹ5) but not within K(X5, Y5). Thus, by the ID approximation of K(X5, Y5) and

K(X9, Y9), the block K(X5, X9) can only be compressed into the form eq. (5.4). Mean-

while, by the ID approximation of K(X5, Ỹ5) and K(X9, Ỹ9) in the standard H2 matrix

representation, the block K(X5, X9) can be compressed into the form eq. (5.3).

Since Ỹi in the standard H2 matrix representation is defined as a superset of Yi for each

node i, K(Xi, Ỹi) has larger numerical rank than K(Xi, Yi) (can be much larger in rare

cases), leading to a larger rank for the approximation of each admissible or partially ad-

missible block K(Xi, Xj). Thus, the H2 matrix representation using partially admissible

blocks introduced in this work typically has smaller storage cost and faster matrix-vector

multiplications than the standard H2 matrix representation. The concept of partially admis-

sible blocks has a counterpart in FMM and is necessary for the exact equivalence between

H2 matrix-vector multiplication and FMM [127].

5.2.2 H2 matrix construction

H2 matrix construction consists of two parts: (1) computing the ID approximation of

K(Xi, Yi) for each node i with non-empty Fi via a nested approach and (2) computing
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the intermediate blocks associated with A ∪ Ap and the inadmissible blocks associated

with D. As just mentioned in the previous paragraph, the second part is optional. The

nested approach to computing these ID approximations is as follows.

For a leaf node i, the ID approximation of K(Xi, Yi) is directly computed using the

proxy point method (to be described in Section 5.2.3). For a non-leaf node i with chil-

dren {i1, i2, . . . , is}, the ID approximations associated with all these children nodes must

be computed first. Then, since Xi = Xi1 ∪ . . . ∪ Xis , K(Xi, Yi) can be split into blocks

K(Xia , Yi) with ia ∈ {i1, i2, . . . , is}. By definition, the points in Yi are in the far field of

box i and thus are also in the far field of each child box ia, i.e., Yi ⊆ Yia . As a result, the

computed ID approximation K(Xia , Yia) ≈ UiaK(X id
ia , Yia) associated with ia gives the ap-

proximation K(Xia , Yi) ≈ UiaK(X id
ia , Yi). Together, K(Xi, Yi) is split and approximated

as,

K(Xi, Yi) =



K(Xi1 , Yi)

K(Xi2 , Yi)

...

K(Xis , Yi)


≈



Ui1K(X id
i1
, Yi)

Ui2K(X id
i2
, Yi)

...

UisK(X id
is , Yi)


=



Ui1

Ui2

. . .

Uis





K(X id
i1
, Yi)

K(X id
i2
, Yi)

...

K(X id
is , Yi)


.

(5.5)

Denoting X̂i = X id
i1
∪X id

i2
∪. . .∪X id

is , an ID approximation of the last block above K(X̂i, Yi)

is computed using the proxy point method as,

K(X̂i, Yi) ≈ RiK(X id
i , Yi), X id

i ⊆ X̂i ⊆ Xi.

Plugging this approximation into eq. (5.5), we get the ID approximation K(Xi, Yi) ≈

UiK(X id
i , Yi) with Ui defined in the nested form eq. (5.2) using the computed Ri.

98



5.2.3 The proxy point method

The H2 matrix construction above is dominated by the ID approximation of K(Xi, Yi) for

leaf nodes i and K(X̂i, Yi) for non-leaf nodes i. All these approximated kernel blocks share

the same form K(X∗, Y∗) where X∗ is a set of points in a box X and Y∗ is a set of points

in a compact subdomain Y of the far field of X , as illustrated in Figure 5.4. In general, Y∗

has far more points than X∗. The proxy point method [109] can efficiently construct an ID

approximation of K(X∗, Y∗) with X∗ × Y∗ lying in a pair of compact domains X × Y as

follows.

First select a set of so-called proxy points Yp in Y following the selection scheme

Algorithm 6 (to be described later). Then compute an ID approximation of K(X∗, Yp)

algebraically using the pivoted QR decomposition as K(X∗, Yp) ≈ U∗K(X id
∗ , Yp) with

X id
∗ ⊆ X∗. Using the computed U∗ and X id

∗ , the ID approximation of K(X∗, Y∗) is then di-

rectly defined as K(X∗, Y∗) ≈ U∗K(X id
∗ , Y∗). In most cases, Yp has far fewer points that Y∗

and thus the above proxy point method is far more efficient than the direct ID approxima-

tion of K(X∗, Y∗). Numerically, when a relative error threshold εid is used for the algebraic

ID approximation of K(X∗, Yp), the defined ID approximation of K(X∗, Y∗) usually has

relative error approximately εid.

Selection of the proxy points

The selection scheme given in Algorithm 6 was proposed in Ref. [109]. The basic idea is

to first discretize K(x, y) in X × Y into matrix K(X1, Y1). Steps 2 and 3 in this algorithm

compresses this matrix as K(X1, Y1) ≈ K(X1, Yp)K(Xp, Yp)
−1K(Xp, Y1) with O(εp) er-

ror. Due to the low-rank property of K(x, y), it can be proved that, if |X1| and |Y1| are
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sufficiently large,

K(x, y) ≈ K(x, Yp)K(Xp, Yp)
−1K(Xp, y) +O(εp), (x, y) ∈ X × Y ,

plug in X∗,Y∗−−−−−−−→ K(X∗, Y∗) ≈ K(X∗, Yp)K(Xp, Yp)
−1K(Xp, Y∗) +O(εp).

The proxy point method exactly computes an ID approximation of K(X∗, Yp) and thus

can also be viewed as a recompression of the above O(εp)-accuracy approximation of

K(X∗, Y∗). Usually, the parameter εp can be set to one or two orders of magnitudes smaller

than the error threshold specified for the proxy point method. The sizes of X1 and Y1

should be large enough to guarantee the accuracy O(εp) of the above function approxima-

tion to K(x, y), and also to guarantee well-boundedness of this specific vector function

K(Xp, Yp)
−1K(Xp, y) in Y which is critical for the accuracy of the proxy point method.

More explanations can be found in [109].

This selection scheme is computationally expensive and only depends on K(x, y) and

X × Y . With more sample points X1 and Y1, the set of proxy points Yp selected by Al-

gorithm 6 is more effective in terms of controlling the accuracy of the proxy point method

based on Yp, but Algorithm 6 becomes more expensive. In H2Pack, the numbers of sam-

ple points in X1 and Y1 in Algorithm 6 are heuristically chosen. We used |X1| = 1000

and |Y1| = 15000 for the various kernel functions and pairs of domains that were tested

numerically (see Section 5.4). An adaptive choice of the number of sample points can

be developed and applied if necessary. The ID approximation of K(X1, Y1) at Step 2 of

Algorithm 6 is computed using a randomized method [128] instead of the pivoted QR de-

composition, for better efficiency. Figure 5.4 illustrates several examples of the selected

proxy points for different kernel functions.

Applying Algorithm 6 to select proxy points for each ID approximation in H2 matrix

construction is expensive and impractical. Instead, we can reuse a set of selected proxy

points Yp for all the ID approximations associated with nodes in one level of the construc-
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Algorithm 6 Proxy point selection scheme

Input: K(x, y), X , Y , εp.
Output: proxy points Yp.

1: Sample domains X and Y to obtain two sets of uniformly distributed points X1 and Y1

with high point density, respectively.
2: Compute an ID approximation K(X1, Y1) ≈ U1K(Xp, Y1) with error threshold

εp
√

|Y1|.
3: Compute a pivoted QR decomposition K(Xp, Y1)P = Q(R1, R2) where P is a per-

mutation matrix, Q is an orthogonal matrix, and R1 is an |Xp| × |Xp| upper-triangular
matrix.

4: Let Yp be the subset of points in Y1 that corresponds to the |Xp| columns of R1 after
permutation.

(a) K(x, y) = log(|x− y|) (b) K(x, y) = exp(−|x− y|2) (c) K(x, y) = exp(−0.1|x− y|2)

Figure 5.4: Examples of the proxy points selected by Algorithm 6 for various kernel func-
tions with X = [−1, 1]2, Y = [−7, 7]2 \ [−3, 3]2, and εp = 10−10. The three sets have 37,
103, and 58 proxy points, respectively.
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tion. Specifically, note that all the boxes in the same level are of the same size and K(x, y)

is assumed to be translationally-invariant. Thus, at each level l, we select X as a box in

level l and Y as a large compact subdomain of the far field of X , and apply Algorithm 6

with X × Y to select a set of proxy points Y l
p . For each node i in level l, let zi be a trans-

lation vector such that Xi + zi lies in X and Yi + zi lies in Y (Y should be selected large

enough to contain Yi + zi for each node i). Since K(Xi, Yi) = K(Xi + zi, Yi + zi), we

can apply the proxy point method with the shifted proxy points Y l
p − zi to compute the ID

approximation of K(Xi, Yi) (or K(X̂i, Yi)).

As a result, at each level, we only need to construct a set of proxy points Y l
p for just one

pair of domains X × Y . The corresponding proxy points for all the nodes in one level can

be obtained by proper translation of Y l
p . Also, another option is to precompute and store

multiple sets of proxy points for box domains X of different sizes (with sufficiently large

domains Y) given a kernel function. In H2 matrix construction, we simply need to load the

corresponding proxy point set based on the box domain size in each level. Combining the

proxy point method with the H2 matrix construction described in the last subsection, the

overall H2 matrix construction for a kernel matrix K(X,X) is summarized in Algorithm 7.

Algorithm 7 H2 matrix construction for K(X,X)

1: • construct a hierarchical partitioning of X which gives a L-level partition tree T .
2: for l = L,L− 1, . . . , 1 do
3: • construct a set of proxy points Y l

p for just one box in level l.
4: parfor all nodes i in level l do (dynamic scheduling)
5: if i is a leaf node then
6: • compute Ui and X id

i from an ID approximation of K(Xi, Yi) using the
proxy point method with a proper translation of Y l

p .
7: else if i is a non-leaf node with children {i1, i2, . . . , is} then
8: • construct X̂ id

i = X id
i1
∪ . . . ∪X id

is .
9: • compute Ri and X id

i from an ID approximation of K(X̂i, Yi) using the
proxy point method with a proper translation of Y l

p .
10: end if
11: end parfor
12: end for
13: • (optional, can be dynamically computed) compute the inadmissible blocks Di,j for

all (i, j) ∈ D and compute the intermediate blocks Bi,j for all (i, j) ∈ A ∪Ap.
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5.2.4 H2 matrix-vector multiplication

Consider computing b = K(X,X)q. For each node i ∈ T , let qi and bi denote the subvec-

tors of q and b, respectively, corresponding to the point subset Xi in X . The H2 matrix-

vector multiplication algorithm [101], summarized in Algorithm 8, traverses all three sets

of kernel blocks K(Xi, Xj) corresponding to D, A, and Ap in the H2 matrix representation

and accumulates the products K(Xi, Xj)qj .

First, initialize the result vector b to zero. For each inadmissible block K(Xi, Xj) with

(i, j) ∈ D, the dense matrix computation is straightforward: bi = bi + K(Xi, Xj)qj . For

each admissible block K(Xi, Xj) with (i, j) ∈ A, the computation

bi = bi +K(Xi, Xj)qj ≈ bi + UiBi,jU
T
j qj,

can be computed in three steps UT
j qj , Bi,j(U

T
j qj), and bi = bi + Ui

(
Bi,j

(
UT
j qj
))

giv-

ing three phases in H2 matrix-vector multiplication: forward transformation, intermediate

multiplication, and backward transformation.

Forward transformation

This phase computes yj = UT
j qj for all the nodes j ∈ T . Note that yj can be used

for all the admissible blocks with columns defined by Xj . For each leaf node j, yj is

directly computed. For each non-leaf node j with children {j1, j2, . . . , js}, yj is recursively

computed using yj1 , yj2 , . . . , yjs associated with the children as

yj = UT
j qj = RT

j


UT
j1

. . .

UT
js



qj1
...

qjs

 = RT
j


UT
j1
qj1
...

UT
jsqjs

 = RT
j


yj1
...

yjs

 .
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Intermediate multiplication

This phase computes zi,j = Bi,jyj for each admissible block K(Xi, Xj) with (i, j) ∈ A.

Note that all the zi,j sharing the node i are to be multiplied by Ui and added to bi as

bi = bi +
∑

(i,j)∈A Uizi,j = bi + Ui

(∑
(i,j)∈A zi,j

)
, for each node i ∈ T .

Only multiplying Ui once, it is more efficient to first sum over all these zi,j , then apply

Ui, and lastly add to bi. Thus, for each node i ∈ T , this phase further computes zi =∑
(i,j)∈A zi,j.

Backward transformation

This phase computes bi = bi + Uizi for each node i ∈ T . For a non-leaf node i with

children {i1, i2, . . . , is}, bi is recursively accumulated as

bi = bi + Uizi = bi +


Ui1

. . .

Uis

Rizi = bi +


Ui1 [Rizi]i1

...

Uis [Rizi]is


where [Rizi]ia denotes the subvector of Rizi associated with Uia . Thus, bi = bi + Uizi is

reduced to bia = bia + Uia [Rizi]ia with all the children ia. Meanwhile, bia = bia + Uiazia

needs to be computed as well. Only multiplying Uia once, it is more efficient to first

overwrite zia by zia = zia + [Rizi]ia and then multiply Uia by zia . Recursively, this phase

traverses the tree from the root to the leaves to overwrite each zi by zi = zi + [Rpzp]i

with p the parent of i. As a result, for each leaf node i, zi accumulates the intermediate

multiplication results from all its ancestors. Adding Uizi to bi for all the leaf nodes in T

finishes this phase. See the lines 21-28 in Algorithm 8 for the exact calculation.

For each partially admissible block K(Xi, Xj) with (i, j) ∈ Ap, its multiplication by
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pj ,

bi = bi + UiBi,jqj or bi = bi +Bi,jU
T
j qj

can be similarly computed following the above process for the admissible blocks. In fact,

these multiplications can be merged into the above three phases for admissible blocks.

H2 matrix-matrix multiplication

Consider computing C = K(X,X)Q. It is straightforward to extend the above H2 matrix-

vector multiplication to the multiplication by multiple vectors simultaneously. We only

need to replace vectors qi, bi, yi, and zi in Algorithm 8 by matrices Qi, Ci, Yi, and Zi,

respectively, where Qi and Ci are the row subsets of Q and C associated with Xi.

5.3 Parallel Implementation

5.3.1 Parallelization and load-balancing

In Section 5.2, we presented H2 matrix construction (H2-construction) and H2 matrix-

vector multiplication (H2-matvec). For the parallel implementation of these two operations,

we consider calculation dependencies associated with each node in the partition tree. In

H2-construction, the first step is to compute specific ID approximations associated with

each node i with nonempty Fi. In this step, the ID approximation at a non-leaf node

cannot be computed until the ID approximations at all its children nodes are computed,

corresponding to a post-order traversal of the partition tree. The optional step of computing

inadmissible and intermediate blocks has no restriction on calculation orders for each block.

In H2-matvec, the forward transformation phase has the same calculation order as the ID

approximations in H2-construction, i.e., the calculation of yi for a non-leaf node i requires

the calculation of {yik} with the children {ik} of i. The backward transformation phase

has calculation order reverse to that of the forward transformation phase, corresponding

to a pre-order traversal of the partition tree. Meanwhile, there is no restriction on the
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Algorithm 8 H2 matrix-vector multiplication
1: • Initialize result vector b to zero.
2: • Initialize temporary vectors zi,∀i ∈ T to zero.

▷ Step 1: Forward transformation
3: for l = L,L− 1, . . . , 1 do
4: parfor all nodes i in level l do (greedy static partitioning)
5: if i is a leaf node then
6: yi = UT

i qi.
7: else
8: yi = RT

i (y
T
i1
, yTi2 , . . . , y

T
is)

T with children {i1, i2, . . . , is} of node i.
9: end if

10: end parfor
11: end for

▷ Step 2: Intermediate multiplication
12: parfor all (i, j) ∈ A do (hybrid load balancing)
13: zi = zi +Bi,jyj .
14: end parfor
15: parfor all (i, j) ∈ Ap do (hybrid load balancing)
16: if K(Xi, Xj) ≈ UiBi,j then
17: zi = zi +Bi,jqj .
18: else (note: K(Xi, Xj) ≈ Bi,jU

T
j )

19: bi = bi +Bi,jyj .
20: end if
21: end parfor

▷ Step 3: Backward transformation
22: for l = 1, 2, . . . , L do
23: parfor all non-leaf node i in level l do (greedy static partitioning)
24: zia = zia + [Rizi]ia with all children ia ∈ {i1, i2, . . . , is} of node i.
25: end parfor
26: end for
27: parfor all leaf node i in T do (hybrid load balancing)
28: bi = bi + Uizi.
29: end parfor

▷ Step 4: Dense multiplication
30: parfor all (i, j) ∈ D do (hybrid load balancing)
31: bi = bi +Di,jqj .
32: end parfor
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calculation order in the intermediate and dense multiplication phases, since the matrix-

vector multiplications by different Bi,j and Di,j are completely independent.

Based on the above observations, the calculations in H2-construction and H2-matvec

can be categorized into two types. The first type is level-by-level calculation, where the

calculation at node i rely on the calculations at nodes on the level above or below. The

second type is independent calculation, where the calculations associated with different

Bi,j or Di,j are independent. We apply different strategies to parallelize these two types of

calculations within the OpenMP framework.

Level-by-level calculations Let the calculation at node i in a level-by-level computation

phase be referred to as task i. In the following phases, task i needs the results of multiple

tasks in a lower level or the result of a task in an upper level:

• the ID approximations in H2-construction (lines 2-12 in Algorithm 7),

• the forward transformation in H2-matvec (lines 3-11 in Algorithm 8),

• the backward transformation in H2-matvec (lines 22-29 in Algorithm 8).

In these computational tasks, the accessed matrices K(Xi, Yp), K(X̂i, Yp), Ui, and Ri

usually have size smaller than 1000 × 1000. For such small matrices, the column-pivoted

QR and matrix-vector multiplications usually have poor parallel performance when us-

ing a large number of processors. Instead of parallelizing these elementary computational

kernels, we choose to parallelize across the tasks in each level of T . Specifically, we paral-

lelize the for-loops in line 4 of Algorithm 7 and in lines 4, 23, and 27 of Algorithm 8 with

OpenMP.

We use different load-balancing strategies for the three computation phases listed above.

In H2-construction, since the size of K(X̂i, Yp) at each non-leaf node is not known in ad-

vance, we use OpenMP dynamic scheduling to balance the workload in the parallel loop of

ID approximations in each level. In H2-matvec, the performance bottleneck of the forward
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and backward transformations is the transfer of Ui and Ri from memory to processors.

Since the sizes of Ui and Ri are known at this stage, we use a greedy static partitioning

scheme to approximately balance the total sizes of matrices that each processor needs to

load from memory.

Independent calculations Let calculations associated with a block Bi,j or Di,j in an

independent computation phase be referred to as task (i, j) with (i, j) in the node pair sets

A ∪ Ap or D. In the following phases, all tasks are independent and can be performed in

parallel without restriction:

• the optional construction of Bi,j and Di,j in H2-construction (lines 13 in Algo-

rithm 7),

• the intermediate multiplication phase in H2-matvec (lines 12-21 in Algorithm 8),

• the dense multiplication phase in H2-matvec (lines 30-32 in Algorithm 8).

Note that, for each Bi,j or Di,j , both the computation cost of forming it and the communi-

cation cost of transferring it from memory to a processor are proportional to its block size

which is known after the ID approximations in H2-construction.

We first consider exploiting the symmetry property of these blocks Bi,j and Di,j . Since

K(X,X) is symmetric, Bi,j = BT
j,i if (i, j) is in A∪Ap (corresponding to an admissible or

partially admissible block) and Di,j = DT
j,i if (i, j) is in D (corresponding to an inadmissi-

ble block). Thus, for each pair of (i, j) and (j, i) in A ∪Ap, only Bi,j is computed and the

following two matrix-vector multiplications in the intermediate multiplication phase will

be performed on one processor simultaneously:

zi = zi +Bi,jyj, zj = zj +BT
i,jyi.

The same approach applies to each pair of (i, j) and (j, i) in D with blocks Di,j .
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We use a hybrid approach for parallelizing and load-balancing the independent calcu-

lations. In this hybrid approach, a static partitioning is used for approximately balancing

the workload on each processor and a dynamic task scheduler is used for polishing the load

balance. We use the construction of blocks Bi,j to illustrate this approach. For P proces-

sors, we partition all tasks into kP disjoint task units (1 ≤ k ≤ 20 is a prescribed constant)

with a greedy algorithm such that the total size of matrix blocks in each task unit is approx-

imately the same. Each processor has k− 1 initial task units, which leads to approximately

the same computation time for initial task units on each processor. The last P task units

form a task pool for dynamic task scheduling. After finishing all its k− 1 initial task units,

a processor starts to steal task units one by one from the task pool until all task units have

been consumed. If k = 1, the hybrid approach is equivalent to a static task partitioning

scheme. The construction of blocks Di,j , the intermediate multiplication phase, and the

dense multiplication phase are all parallelized in the same way.

Combining the utilization of the symmetry property and the hybrid parallelization ap-

proach causes a new problem. In the intermediate and dense multiplication phases, two or

more processors may update the same zi or bi simultaneously, leading to incorrect results.

Three solutions to this problem are available. The first is to discard utilizing the symmetry

property and then to partition the corresponding tasks in a way that each zi and bi can be

updated by only one processor. This approach is unfavorable since it leads to more data

transfer between memory and processors and higher computation cost. The second solution

is to use atomic operations for updating zi and bi. However, atomic operations are much

slower than their non-atomic counterparts. In H2Pack, we use the third solution that each

processor uses local copies of zi and bi to accumulate local matrix-vector multiplication

results. All local copies of zi/bi are summed after the intermediate/dense multiplication

phase to form the actual zi/bi. The additional cost for summing local copies of zi and bi is

negligible compared to the main phases in H2-matvec.

For multiplying multiple vectors simultaneously, H2Pack provides a separate H2 matrix-
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matrix multiplication (H2-matmul) function. In H2-matmul, vectors qi, bi, yi, and zi in

H2-matvec are replaced by blocks Qi, Ci, Yi, and Zi, and the matrix-vector multiplica-

tions in H2-matvec are replaced by matrix-matrix multiplications. The multiplicand matrix

Q could be stored in either row-major or column-major format, with the output matrix C

stored in the same format. H2-matmul adopts almost the same parallelization and load-

balancing scheme as H2-matvec. One exception is that H2-matmul does not utilize the

symmetry property of Bi,j and Di,j blocks. Instead, independent calculation tasks with

Bi,j and Di,j are partitioned in a way that each Zi and Ci is only updated by one processor.

Processor-local Zi and Ci copies are not used since they could require a large amount of

memory.

5.3.2 Performance optimizations

We optimize H2Pack for state-of-the-art multi-core and many-core architectures. We first

introduce the H2Pack kernel function interface in Section 5.3.2. Next, we discuss two

running modes of H2Pack in Section 5.3.2. Then, we illustrate the use of intrinsic functions

for better vectorization in Section 5.3.2.

Kernel function interface

The performance of H2Pack relies on the performance of evaluating the kernel function.

H2-construction and H2-matvec using just-in-time mode (to be discussed in Section 5.3.2)

both need to evaluate a large number of kernel matrix blocks. H2Pack provides an opti-

mized implementation of the 3D Laplace kernel K(x, y) = 1/|x−y| which can be modified

easily for other kernel functions. In the following, we use the 3D Laplace kernel as an ex-

ample to show the H2Pack kernel function interface.

H2Pack provides a C language interface. A driver program must provide a pointer to a

kernel matrix evaluation (KME) function to use H2Pack. Listing 5.1 shows a KME func-

tion for the 3D Laplace kernel. Lines 2-4 in Listing 5.1 are parameters of a KME function:
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two sets of point coordinates coord0 and coord1 and the kernel matrix kmat to be

returned. Input coord0 is a 3×n0 row-major matrix with leading dimension ld0 and

contains the coordinates of n0 points. Each column of coord0 stores a point coordinate.

The same storage scheme applies to coord1. The function returns an n0×n1 kernel ma-

trix stored in a row-major matrix kmat with leading dimension ldm. Note that a KME

function should be single-threaded and should only use variables or memory that can be

updated by the current thread.

The above design of a KME function is in order to facilitate the vectorization of multiple

kernel function evaluations. It would be easier for users to program a function evaluating

the kernel function for just a single pair of points. However, such a single-value function

must be compiled together with H2Pack so that the compiler can auto-vectorize multiple

kernel function evaluations. Using KME functions is more flexible: H2Pack only needs to

be compiled once for different KME functions, and a KME function can be auto-vectorized

by the compiler (line 14 in Listing Listing 5.1) or manually vectorized (to be discussed in

Section 5.3.2).

Ahead-of-time and just-in-time running modes

H2Pack provides two running modes of H2-construction and H2-matvec: (1) ahead-of-time

(AOT) mode computes and stores all Bi,j and Di,j in H2-construction, and (2) just-in-time

(JIT) mode computes each Bi,j and Di,j when needed in H2-matvec without storing them.

These two modes give flexibility in how to obtain performance on different computing plat-

forms for different kernel functions. We note that any implementations of H2 matrix rep-

resentations based on ID approximations, e.g., the SMASH library and the STRUMPACK

library, can also use both AOT and JIT modes.

The AOT mode is designed to avoid redundant calculation when the cost of kernel

function evaluation is high. To form Bi,j and Di,j , a large number of kernel function eval-

uations are needed. Kernel functions with transcendental arithmetic (e.g., the Gaussian
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Listing 5.1: Sample KME function for the 3D Laplace kernel
1 void Laplace_3D_krnl_eval(
2 const double *coord0, const int ld0, const int n0,
3 const double *coord1, const int ld1, const int n1,
4 double * restrict kmat, const int ldm
5 )
6 {
7 const double *x0 = coord0 + ld0 * 0, *x1 = coord1 + ld1 * 0;
8 const double *y0 = coord0 + ld0 * 1, *y1 = coord1 + ld1 * 1;
9 const double *z0 = coord0 + ld0 * 2, *z1 = coord1 + ld1 * 2;

10 for (int i = 0; i < n0; i++)
11 {
12 double x0i = x0[i], y0i = y0[i], z0i = z0[i];
13 double *kmat_i = kmat + i * ldm;
14 #pragma omp simd / / R e q u i r e s t h e c o m p i l e r t o v e c t o r i z e t h i s l oop
15 for (int j = 0; j < n1; j++)
16 {
17 double dx = x1[j] - x0i;
18 double dy = y1[j] - y0i;
19 double dz = z1[j] - z0i;
20 double r2 = dx * dx + dy * dy + dz * dz;
21 double rinv = (r2 == 0.0) ? 0.0 : 1.0 / sqrt(r2);
22 kmat_i[j] = rinv;
23 }
24 }
25 }
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kernel K(x, y) = exp(|x − y|2) and the logarithm kernel K(x, y) = log(|x − y|)) have

much higher evaluation cost than those without transcendental arithmetic. In such cases,

using AOT mode could be more efficient than using JIT mode for H2-matvec. As a trade-

off, AOT mode has much larger storage cost than JIT mode due to the storage of Bi,j and

Di,j .

The performance bottleneck of H2-matvec in AOT mode is the transfer of Bi,j and

Di,j from memory to processors. Two optimizations are proposed for H2-matvec in AOT

mode, targeting the intermediate and dense multiplication phases. First, we optimize for

non-uniform memory access (NUMA) architectures. The memory for Bi,j and Di,j blocks

used by a processor is bound to its NUMA node to reduce memory access latency and to

fully utilize memory bandwidth of all NUMA nodes in a computer. Second, we implement

a bi-matrix-vector multiplication (BMV) function that computes Ax0 and ATx1 with a

matrix A and two input vectors x0, x1 simultaneously to avoid loading the same Bi,j or

Di,j block twice from memory or processor cache. This function is not available in any

existing optimized linear algebra library.

The JIT mode is designed to reduce the storage cost of an H2 matrix representation.

The total size of all Bi,j and Di,j blocks is usually 10 to 100 times larger than that of

other H2 matrix components. For a given memory size, by not storing Bi,j and Di,j

blocks, H2Pack in JIT mode can handle problems with far more points. We use the cache-

blocking technique to optimize the intermediate and dense multiplication phases in JIT

mode. Specifically, we partition Bi,j or Di,j into multiple subblocks such that each sub-

block and the coordinates associated with this subblock can fit in processor L2 data cache.

A small processor-private buffer is used for each processor to temporarily store a dynam-

ically generated subblock. Once a subblock is generated, we use this subblock and the

BMV function to compute two matrix-vector multiplications immediately. Since only the

point coordinates need to be transferred from memory to processors, the intermediate and

dense multiplication phases also have much smaller memory bandwidth pressure in JIT
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Listing 5.2: Sample BKM function for the 3D Laplace kernel
1 void Laplace_3D_bi_krnl_matvec(
2 const double *coord0, const int ld0, const int n0,
3 const double *coord1, const int ld1, const int n1,
4 const double *xin0, const double *xin1,
5 double * restrict xout0, double * restrict xout1
6 )
7 {
8 const double *x0 = coord0 + ld0 * 0, *x1 = coord1 + ld1 * 0;
9 const double *y0 = coord0 + ld0 * 1, *y1 = coord1 + ld1 * 1;

10 const double *z0 = coord0 + ld0 * 2, *z1 = coord1 + ld1 * 2;
11 for (int i = 0; i < n0; i++)
12 {
13 double x0i = x0[i], y0i = y0[i], z0i = z0[i], xin1_i = xin1[i];
14 double sum_i = 0.0;
15 #pragma omp simd / / R e q u i r e s t h e c o m p i l e r t o v e c t o r i z e t h i s l oop
16 for (int j = 0; j < n1; j++)
17 {
18 double dx = x1[j] - x0i;
19 double dy = y1[j] - y0i;
20 double dz = z1[j] - z0i;
21 double r2 = dx * dx + dy * dy + dz * dz;
22 double rinv = (r2 == 0.0) ? 0.0 : 1.0 / sqrt(r2);
23 sum_i += rinv * xin0[j];
24 xout1[j] += rinv * xin1;
25 }
26 xout0[i] += sum_i;
27 }
28 }

mode than in AOT mode.

We further design a matrix-free approach for H2-matvec in JIT mode using a bi-kernel

matvec (BKM) function (note that H2-matmul does not use the BKM function). For

two point sets X0 and X1, a BKM function calculates two matrix-vector multiplications

K(X0, X1)x0 and K(X1, X0)x1 at the same time without explicitly storing (“matrix-free”)

any subblock of K(X0, X1) or K(X1, X0). Compared to using a KME function, using a

BKM function eliminates the transferring of the dynamically generated subblocks of Bi,j

and Di,j between a processor and its L2 data cache. Listing 5.2 shows a sample BKM func-

tion for the 3D Laplace kernel. Lines 2-4 in Listing 5.2 are parameters of a BKM function:

two sets of point coordinates coord0 and coord1 stored in the same way as in the KME

function, two input vectors xin0, xin1, and two output vectors xout0, xout1. Input
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xin0 stores x0 and xout0 stores the result of K(X0, X1)x0. Input xin1 stores x1 and

xout0 stores the result of K(X1, X0)x1. The only difference between a KME function

and a BKM function is that once a kernel function value is calculated (line 21 in both List-

ing Listing 5.1 and Listing 5.2), a KME function stores this value to a matrix but a BKM

function consumes this value and discards it immediately. If the kernel function evaluation

is cheap (for example, for the 3D Laplace kernel) and we have fast processors but moderate

memory bandwidth, H2-matvec in JIT mode using a BKM function could be faster than

H2-matvec in AOT mode.

Vector intrinsics

Effectively vectorizing the KME and BKM functions is critical to high performance

of H2Pack. In general, KME and BKM functions for scalar kernels (kernels that return a

single value for a pair of points) using the same framework as Listing 5.1 and Listing 5.2

can be auto-vectorized by compilers. As an alternative, H2Pack provides a set of vector

wrapper functions independent of the processor instruction set for manually vectorizing

calculations with intrinsic functions. The optimized KME and BKM functions provided in

H2Pack for the 3D Laplace kernel use these vector wrapper functions. Currently the vector

wrapper functions supports AVX, AVX2, and AVX-512 instruction sets on x86 architecture.

(Other architectures can also be supported in the future.)

Listing 5.3 shows a sample KME function for the 3D Laplace kernel using vector wrap-

per functions. This function has two major parts in its inner loop: a manually vectorized

loop using vector wrapper functions (lines 15-28) and a remainder loop (lines 30-39) us-

ing scalar operations. All vector wrapper functions are named as vec {opname} {d/s},

where opname is the operation name and the suffix indicates the floating point data type

(double (d) or float (s)). Constant value SIMD LEN D indicates the number of double words

in each vec d vector data type. This constant is determined according to the processor in-

struction set and H2Pack compilation options. Vector wrapper functions used in Listing

115



Listing 5.3: Sample KME function for the 3D Laplace kernel using vector wrapper func-
tions

1 void Laplace_3D_krnl_eval_vec(
2 const double *coord0, const int ld0, const int n0,
3 const double *coord1, const int ld1, const int n1,
4 double * restrict kmat, const int ldm
5 )
6 {
7 const double *x0 = coord0 + ld0 * 0, *x1 = coord1 + ld1 * 0;
8 const double *y0 = coord0 + ld0 * 1, *y1 = coord1 + ld1 * 1;
9 const double *z0 = coord0 + ld0 * 2, *z1 = coord1 + ld1 * 2;

10 int n1_vec = (n1_vec / SIMD_LEN_D) * SIMD_LEN_D;
11 for (int i = 0; i < n0; i++)
12 {
13 double *kmat_i = kmat + i * ldm;
14 / / V e c t o r i z e d loop
15 vec_d x0i_v = vec_set1_d(x0[i]);
16 vec_d y0i_v = vec_set1_d(y0[i]);
17 vec_d z0i_v = vec_set1_d(z0[i]);
18 for (int j = 0; j < n1_vec; j += SIMD_LEN_D)
19 {
20 vec_d dx_v = vec_sub_d(vec_loadu_d(x1 + j), x0i_v);
21 vec_d dy_v = vec_sub_d(vec_loadu_d(y1 + j), y0i_v);
22 vec_d dz_v = vec_sub_d(vec_loadu_d(z1 + j), z0i_v);
23 vec_d r2_v = vec_mul_d(dx_v, dx_v);
24 r2_v = vec_fmadd_d(dy_v, dy_v, r2_v);
25 r2_v = vec_fmadd_d(dz_v, dz_v, r2_v);
26 vec_d rinv_v = vec_frsqrt_d(r2_v);
27 vec_storeu_d(kmat_i + j, rinv_v);
28 }
29 / / Remainder loop
30 double x0i = x0[i], y0i = y0[i], z0i = z0[i];
31 for (int j = n1_vec; j < n1; j++)
32 {
33 double dx = x1[j] - x0i;
34 double dy = y1[j] - y0i;
35 double dz = z1[j] - z0i;
36 double r2 = dx * dx + dy * dy + dz * dz;
37 double rinv = (r2 == 0.0) ? 0.0 : 1.0 / sqrt(r2);
38 kmat_i[j] = rinv;
39 }
40 }
41 }
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Listing 5.3 are the most useful vector wrapper functions for programming KME and BKM

functions. A detailed list of all vector wrapper functions and their usage can be found in the

H2Pack user manual. For BKM functions, H2Pack automatically pads artificial points in

coord0, coord1 and pads extra zeros in xin0, xin1 to guarantee that n0 and n1 are

multiples of SIMD LEN D. The padding aims to simplify the programming of BKM

functions since the remainder loop can be eliminated.

Calculating the reciprocal square root (RSQRT) is an expensive step in evaluating

1/|x − y|, which appears in many kernel functions. We thus implement a fast RSQRT

function with x86 intrinsic functions based on the approach proposed in Ref. [129]. In this

fast RSQRT function, a dedicated intrinsic function is first used to calculate an approxi-

mate RSQRT value with relative error less than 4 × 10−4. Then, two Newton-Raphson

iterations are performed using the approximate RSQRT value as an initial guess to obtain a

more accurate RSQRT result with O(10−14) relative error. The same or similar approaches

to computing RSQRT have also been used in some existing FMM implementations [118,

130].

5.4 Numerical Experiments

We consider two types of point distributions: random distributions on the unit sphere in

3D (sphere point sets) and random distributions in the unit ball in 3D (ball point sets). For

experiments in Sections 5.4.1 and 5.4.5, we use an Intel Skylake node on the Stampede2

supercomputer at Texas Advanced Computing Center. This node has two sockets and 192

GB DDR4 memory. Each socket has an Intel Xeon Platinum 8160 processor with 24 cores

and 2 hyperthreads per core. For experiments in Section 5.4.2, we use an Intel Skylake node

described above and an Intel Knights Landing node. The latter has an Intel Xeon Phi 7210

many-core processor with 64 cores and 4 hyperthreads per core, 16 GB MCDRAM high-

bandwidth memory, and 96 GB DDR4 memory. H2Pack is compiled using Intel C compiler

2018.0.2 with optimization flags “-xHost -O3” on both nodes. Intel MKL 2018.0.2 is used
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in H2Pack to perform general matrix-vector multiplications (xGEMV) and general matrix-

matrix multiplications (xGEMM). Double precision floating point is used for storage and

calculations in H2Pack.

5.4.1 Accuracy tests

We first measure the accuracy of H2 matrix representations constructed by H2Pack under

different settings. We consider three kernel functions:

• 3D Laplace kernel: K(x, y) = 1
|x−y| ,

• 3D Gaussian kernel: K(x, y) = exp(−|x− y|2),

• 3D Stokes kernel: K(x, y) = 1
|x−y|I +

(x−y)(x−y)T

|x−y|3 .

For each H2-matvec, denoted as an approximation AH2v ≈ b = K(X,X)v, its relative

error is measured as

relerr =

√∑
i∈S(bi − (AH2v)i)2√∑

i∈S b
2
i

, (5.6)

where S is a set of 10000 indices randomly chosen from 1 to the length of b and the entries

{bi}i∈S are computed via direct matrix-vector multiplication.

Table 5.1 shows the relative error of H2-matvec for the two types of point sets with

different prescribed relative error thresholds for the ID approximation in H2-construction.

Both the sphere and ball point sets contain 1 × 106 points. All the multiplicand vectors

for H2-matvec have entries randomly and uniformly generated between [−1, 1]. Each re-

ported relative error is the average result obtained by 10 independent H2-matvec tests. The

prescribed relative error threshold varies from 1× 10−2 to 1× 10−12. As can be observed,

for all tested kernel functions and types of point sets, the relative errors of H2-matvec are

controlled by the prescribed threshold. Further, when the relative error threshold is above

1× 10−8, the actual relative error is usually an order of magnitude smaller than the thresh-

old.
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Table 5.1: Relative error of H2-matvec in H2Pack for several kernel functions with differ-
ent prescribed relative error thresholds for the ID approximation in H2-construction (“ID
approx. relerr”). Both sphere and ball points sets are tested. Each point set contains 1×106

points.

ID approx. relerr 1.00E-2 1.00E-4 1.00E-6 1.00E-8 1.00E-10 1.00E-12

3D Laplace
sphere 8.42E-4 3.68E-6 4.30E-8 6.35E-10 2.97E-11 9.20E-13
ball 8.21E-4 4.13E-6 4.54E-8 8.05E-10 4.27E-11 5.30E-13

3D Gaussian
sphere 3.38E-3 1.89E-5 2.35E-7 4.25E-9 1.73E-11 2.38E-13
ball 3.57E-3 1.53E-5 1.46E-7 1.13E-9 1.09E-11 3.85E-12

3D Stokes
sphere 1.26E-3 7.06E-6 6.02E-8 3.73E-10 2.46E-12 2.71E-12
ball 1.42E-3 7.72E-6 3.20E-7 2.61E-9 2.69E-11 2.76E-12

5.4.2 Scalability tests

We now demonstrate the strong scalability (fixed problem size) of H2Pack. We test the 3D

Laplace kernel with a ball point set of size 2 × 105 points and with 1 × 10−6 prescribed

matvec relative error. Under this setting, the constructed H2 matrix representation in AOT

mode can be completely stored in the 16 GB MCDRAM high-bandwidth memory of the

Knights Landing node. On the Skylake node, we run H2Pack using one thread per core

on all 48 cores. On the Knights Landing node, we run H2Pack using one thread per core

on all 64 cores. Figure 5.5 shows the timings of H2-construction (“build”) and H2-matvec

(“matvec”) of H2Pack in AOT and JIT modes on the two different nodes.

For H2-construction, JIT mode is faster than AOT mode on both types of compute nodes

since AOT mode additionally calculates and stores Bi,j and Di,j blocks. For both modes,

however, H2-construction does not fully scale to all the cores on both types of nodes.

The reason is that the performance of H2-construction is limited by memory bandwidth.

The major computational kernel in H2-construction in both modes is the column-pivoted

QR factorization to compute ID approximations (lines 6 and 9 in Algorithm 7). On both

nodes, this computational kernel takes more than 95% and 50% of H2-construction time

in JIT mode and AOT mode, respectively. Meanwhile, this computational kernel has a

low computation-to-memory-access ratio and thus its performance is determined by the
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Figure 5.5: H2Pack H2 construction (“build”) and H2 matvec (“matvec”) timings in AOT
mode and JIT mode on an Intel Skylake node (left) and an Intel Knights Landing node
(right) using different numbers of cores. Projected H2-matvec time in JIT mode assuming
all processors always run at 3.5GHz (“JIT matvec projected”) on the Skylake node is also
plotted as a reference. A ball point set with 2 × 105 points and a 10−6 prescribed matvec
relative error are used.

memory access bandwidth. Intel VTune (Intel performance profiling software) reports that

the achieved memory bandwidth of this computational kernel is more than 80% of the peak

memory bandwidth when using all cores on both nodes.

For H2-matvec, JIT mode is faster than AOT mode on the Skylake node while AOT

mode is faster than JIT mode on the Knights Landing node, which is due to hardware

differences between the Skylake node and the Knights Landing node. The Knights Landing

node has high memory bandwidth but its single core performance is only moderate. On this

node, the parallel efficiencies of H2-matvec in JIT and AOT modes are 89.0% and 70.5%,

respectively, showing excellent scalability. Intel VTune reports that H2-matvec in AOT

mode only utilizes about 65% of the peak MCDRAM memory bandwidth on the Knights

Landing node when using all 64 cores. The Skylake node has powerful processor cores

with moderate memory bandwidth. On this node, the parallel efficiencies of H2-matvec
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in JIT and AOT modes are only 33.1% and 42.3%, respectively. Intel VTune reports that

H2-matvec in AOT mode achieved 79% and 90% of the peak memory bandwidth when

using 24 and 48 cores on the Skylake node, suggesting that the lower parallel efficiency

in AOT mode than in JIT mode is caused by the memory bandwidth limit. Furthermore,

the lower parallel efficiency in JIT mode on the Skylake node than on the Knights Landing

node (i.e., 33.1% v.s. 89.0%) is due to Intel Turbo Boost technology on Intel Xeon Platinum

processors. If only one core is active on a Xeon Platinum 8160 processor (on the Skylake

node), this core runs at 3.5 GHz. The more active cores, the lower the clock frequency of

the cores. If all 24 cores are active, all the cores run at only 2.0 GHz. In comparison, all

cores on the Knights Landing node always run at 1.4 GHz. This decrease of core frequency

reduces the parallel efficiency of H2-matvec in JIT mode which requires a large number

of kernel function evaluations. In Figure 5.5, we also plot the projected execution time for

H2-matvec in JIT mode on the Skylake node assuming that all its cores always run at 3.5

GHz. The projected parallel efficiency of H2-matvec in JIT mode is 72.5% when using 48

cores.

Lastly, we also measure the performance of H2-matvec in JIT mode in terms of giga

floating-point operations per second (GFLOPS). To measure this performance, we note that

evaluating one value of the 3D Laplace kernel requires 19 floating-point operations (8 for

the squared distance, 1 for the approximate RSQRT and 10 for two Newton iterations). On

the Skylake node, H2-matvec in JIT mode achieved 1047 GFLOPS (34.9% of the peak per-

formance). On the Knights Landing node, H2-matvec in JIT mode achieved 651 GFLOPS

(24.5% of the peak performance).

5.4.3 Performance improvements by BKM and vectorization

The efficient evaluation of kernel functions is crucial to the overall performance of H2-

construction and H2-matvec (in JIT mode). In this section, we study the performance im-

provements brought by the BKM interface and vector wrapper functions. Table 5.2 shows
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Table 5.2: Timing results (in seconds) of H2-construction and H2-matvec using differ-
ent implementations of KME and BKM functions for 3D Gaussian kernel: no vectoriza-
tion (“no-vec”), automatic vectorization by the Intel C compiler (“auto-vec”), and manual
vectorization by vector wrapper functions (“wrap-vec”). The JIT mode and relative error
threshold 10−6 are used in all the tests.

#pts ×105
ball sphere

1 4 16 1 4 16

H2-construction
KME no-vec 0.046 0.142 0.583 0.051 0.127 0.400
KME auto-vec 0.045 0.131 0.574 0.049 0.123 0.396
KME wrap-vec 0.043 0.128 0.566 0.050 0.123 0.394

H2-matvec
KME no-vec 0.086 0.211 0.504 0.035 0.117 0.499
KME auto-vec 0.028 0.075 0.188 0.012 0.041 0.172
KME wrap-vec 0.018 0.057 0.146 0.008 0.035 0.119
BKM no-vec 0.092 0.264 0.735 0.040 0.138 0.586
BKM auto-vec 0.028 0.076 0.209 0.012 0.041 0.178
BKM wrap-vec 0.013 0.037 0.118 0.006 0.029 0.089

the timing results of H2-construction and H2-matvec using different implementations of

KME and BKM functions for the 3D Gaussian kernel K(x, y) = exp(−|x− y|2): no vec-

torization, automatic vectorization by the Intel C compiler, and our manual vectorization

by vector wrapper functions.

As explained in Section 5.4.2, H2-construction in JIT mode is dominated by the column-

pivoted QR factorization, and thus only gains minor performance improvements from vec-

torization. Meanwhile, both automatic and manual vectorization of KME and BKM func-

tions can lead to 300%-400% speedup in H2-matvec, with the manual vectorization being

20%-50% faster than the automatic vectorization. Comparing KME and BKM functions

for H2-matvec, using KME functions without vectorization or with automatic vectoriza-

tion can be even faster than using BKM functions. This is because the dense matrix-vector

multiplication after evaluating a kernel block by KME functions is vectorized in the BLAS

library. On the other hand, based on the manual vectorization, using BKM functions is

20%-35% faster than using KME functions.
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5.4.4 Comparison between H2-matvec and H2-matmul

In this section, we compare the performance of H2-matvec and H2-matmul in H2Pack for

multiplying multiple vectors. In the latter, the vectors are assumed to be available at the

same time and the multiplications are performed simultaneously. Figure 5.6 shows the

timings of H2-matvec and H2-matmul to multiply different numbers of vectors in both

AOT and JIT modes. The results are qualitatively similar for other kernel functions and

point sets. Column-major format for the matrix of vectors was used; the timings for row-

major format are very similar. The corresponding H2-construction in AOT and JIT modes

take 2.54 seconds and 1.11 seconds, respectively. The runtime of H2-matmul increases

much more slowly with the number of vectors compared to H2-matvec. This indicates

that calculating Bi,j and Di,j blocks in JIT mode or transferring these blocks from the

main memory to the processor cache in AOT mode are very expensive compared to the

actual multiplication. For a single vector, H2-matmul is slower than H2-matvec because the

symmetry property of Bi,j and Di,j is not exploited (see Section 5.3.1). In AOT mode, the

performance of H2-matmul is further affected by NUMA. H2-matvec uses a fixed workload

partitioning and Bi,j and Di,j blocks are optimized for this fixed partitioning using the first-

touch policy. H2-matmul uses a different workload partitioning, making it hard to optimize

for NUMA without almost doubling the storage.

5.4.5 Comparison with fast multipole methods

In this section, we compare the performance of H2Pack with two fast multipole method

(FMM) libraries: the FMM3D library implements the standard FMM and the PVFMM li-

brary implements the kernel-independent FMM (KIFMM). We note that FMM3D works

for the 3D Laplace, Stokes, and Helmholtz kernels, PVFMM works for kernel functions

from potential theory, and H2Pack can work for non-oscillatory kernel functions in gen-

eral. For all the libraries, we use the same sets of points and test using the 3D Laplace

kernel. The number of points in X ranges from 1× 105 to 1.6× 106. For all three libraries,
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Figure 5.6: Timings of H2-matvec and H2-matmul (in seconds) in AOT and JIT modes
for multiplying different numbers of vectors on the Skylake node. The test settings are:
3D Laplace kernel, a ball point set with 1.6 × 106 points, and a prescribed relative error
threshold 10−6.

we specify that a box is further partitioned into smaller boxes if it contains more than 400

points in the hierarchical partitioning of X . For H2Pack, JIT mode is used. All three

libraries are compiled using Intel C/C++/Fortran compilers and Intel MPI 2018.0.2 with

optimization flags “-xHost -O3”. Intel MKL 2018.0.2 is used to perform optimized general

matrix-vector multiplications (xGEMV), general matrix-matrix multiplications (xGEMM),

and fast Fourier transformations that appear in these three libraries. Double precision float-

ing point is used for storage and calculations in all three libraries.

We run all three libraries using one thread per core on all 48 cores on a Skylake node.

Tables 5.3 to 5.5 show the test results corresponding to relative multiplication accuracy

of approximately 10−5, 10−8, and 10−11, respectively. The tables show results for the

following quantities:

• Precomputation cost. The runtime of specific precomputations in H2Pack and

PVFMM that can be reused for different sets of points but not for different accu-
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racy requirements and for different kernel functions. (FMM3D does not have pre-

computations.) In H2Pack, the precomputation involves computing the proxy points.

In PVFMM, the precomputation involves computing fixed translation operators in

KIFMM and storing them into a file.

• Setup cost. The runtime of all the computations other than the precomputations

above before matrix-vector multiplications, i.e., hierarchical partitioning of X in all

the libraries and H2-construction in H2Pack.

• Peak memory. The peak memory usage recorded by the operating system during the

entire program execution (precomputation, setup, and matrix-vector multiplication).

• Storage cost. The storage cost of the translation operators in PVFMM and of the H2

matrix components in H2Pack. (FMM3D does not report its storage cost.)

• Runtime and relative error of the multiplication. These results are averaged over

5 multiplications by random vectors for each point set X . The relative error is defined

in Equation 5.6.

• Degree and rank. The “degree” in PVFMM and FMM3D is an input parameter

characterizing the number of expansion terms used for analytic compression of ker-

nel matrix blocks. In PVFMM, a degree of k corresponds to a rank-6k2 analytic

approximation of each block to be compressed in the equivalent H2 matrix repre-

sentation. In FMM3D, a degree of k corresponds to the approximation rank being

(k + 1)2. For H2Pack, the resulting maximum and average ranks of all the low-rank

approximations in each constructed H2 matrix are listed.

From the results, the cost for H2-construction (“setup”) in H2Pack scales linearly in

the number of points and increases with higher relative multiplication accuracy. For points

in a unit ball, the H2Pack setup cost can be much more expensive than the setup costs in

PVFMM and FMM3D. However, the setup cost of H2Pack is much cheaper for points on
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the unit sphere than in the unit ball. This is due to the smaller approximation ranks for all

the blocks compressed in H2-construction.

The maximum and average approximation ranks in H2Pack are all much smaller than

those in PVFMM and FMM3D. The approximation ranks in H2Pack are different with

different point distributions, while PVFMM and FMM3D have fixed approximation ranks

for both types of point distributions. As a result, H2Pack is the fastest library for matrix-

vector multiplications among the three and this efficiency advantage becomes even greater

when dealing with points on the unit sphere, i.e., around 5 times faster than PVFMM and

25 times faster than FMM3D.

The storage cost of H2Pack is proportional to the number of points and the approxi-

mation ranks in the constructed H2 matrices. In comparison, the storage cost of PVFMM

changes very mildly under different problem settings. H2Pack has much smaller storage

cost for small problems compared with PVFMM but ultimately can have larger storage cost

when the number of points or the relative accuracy increases. For example, H2Pack begins

to have more storage cost for 8 × 105 points in the unit ball with relative accuracy 10−11.

FMM3D does not report its storage cost but theoretically only has very small storage cost

for temporary components.

It is worth noting that the peak memory recorded by the operating system depends on

the actual implementations of these libraries and can only be used as a rough reference

for comparing the three different methods. As can be noted, H2Pack has its peak memory

increasing much faster than PVFMM and eventually has larger peak memory than PVFMM

when dealing with large numbers of points and high relative accuracy, e.g., 8× 105 points

in the unit ball with relative accuracy 10−11. Meanwhile, FMM3D also has increasing peak

memory with more points but has the smallest peak memory among the three libraries when

dealing with a large number of points.

Compared to FMM3D, both H2Pack and PVFMM have relatively expensive precompu-

tations. For H2Pack, the precomputation involves the kernel-related proxy point selection.
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However, for a given kernel function, the selected proxy points in H2Pack can be saved to

a file and reused in future computations. For certain kernel functions such as the Laplace

and Stokes kernels, H2Pack can also apply the proxy surface method [110] to generate the

proxy points with negligible computation cost. For PVFMM, the precomputation involves

computing fixed translation operators and its complexity depends on the kernel function

and the degree parameter (which controls the relative accuracy). These precomputed re-

sults in PVFMM are stored in files for reuse. Since the precomputations in H2Pack and

PVFMM can be reused when the kernel function and the relative accuracy are fixed, the

precomputation costs typically make no impact in practice.
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Figure 5.7: Setup and matvec timings (in seconds) and parallel efficiency (in percentage)
using different numbers of cores on a Skylake node for FMM3D, PVFMM, and H2Pack.
A ball point set with 4 × 105 points and a 10−8 prescribed matvec relative error threshold
are used.

Figure 5.7 shows the timings and parallel efficiencies of the “setup” and “matvec” pro-

cedures of the three tested libraries. For H2Pack, the results in Figure 5.7 are similar to the

results in Figure 5.5, but the parallel efficiency of H2-matvec when using 48 cores is higher

in Figure 5.7 (49.9% v.s. 33.1%) due to more points and a larger parallelism. The setup
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procedure is not parallelized in FMM3D and not fully parallelized in PVFMM, leading to

poor parallel efficiencies in FMM3D and PVFMM for the setup. Although FMM3D has

slightly better parallel efficiency in matvec compared to PVFMM and H2Pack, its absolute

matvec time is much larger than the matvec time of PVFMM and H2Pack.

To summarize, the numerical comparisons above show that FMM libraries typically

have less cost for setup and storage but also typically have slower matrix-vector multipli-

cations than H2Pack. Thus, FMM libraries are more suitable for problems where only a

few matrix-vector multiplications are required per set of points, e.g., particle simulations.

Meanwhile, H2Pack is more suitable for problems where many matrix-vector multipli-

cations are required per set of points, e.g., numerical solution of integral equations and

Gaussian processes, so that the relatively expensive H2 construction cost can be amortized

by many multiplications.
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Table 5.3: Numerical results of the three libraries with relative accuracy around 10−5. “Pre-
comp” refers to the precomputations in H2Pack and PVFMM. “Mem” refers to the peak
memory usage recorded by the operating system. “Storage” refers to the storage cost of
translation operators in PVFMM and that of H2 matrix components in H2Pack.

H2Pack
#pts ×105 precomp(s) setup(s) matvec(s) mem(MB) storage(MB) relerr max/avg rank

sphere 1 0.185 0.062 0.005 519 15 1.63E-05 29/15
sphere 2 0.194 0.082 0.010 436 30 1.91E-05 28/15
sphere 4 0.187 0.125 0.018 569 59 2.12E-05 28/15
sphere 8 0.239 0.223 0.037 839 119 2.34E-05 28/15
sphere 16 0.278 0.444 0.075 1345 234 2.64E-05 28/15

ball 1 0.159 0.073 0.010 669 43 1.68E-05 69/40
ball 2 0.162 0.160 0.019 823 89 1.86E-05 69/35
ball 4 0.157 0.173 0.035 836 163 2.14E-05 71/39
ball 8 0.194 0.249 0.090 1181 308 2.56E-05 70/38
ball 16 0.189 0.784 0.149 2418 723 2.84E-05 70/37

PVFMM
#pts ×105 precomp(s) setup(s) matvec(s) mem(MB) storage(MB) relerr degree rank

sphere 1 1.161 0.069 0.020 1164 1138 7.51E-06 5 150
sphere 2 1.117 0.087 0.027 1388 1186 8.85E-06 5 150
sphere 4 1.114 0.134 0.056 1799 1271 6.41E-06 5 150
sphere 8 1.163 0.328 0.132 2753 1461 9.91E-06 5 150
sphere 16 1.115 0.686 0.230 4528 1845 9.70E-06 5 150

ball 1 1.113 0.042 0.035 1128 1134 1.99E-05 5 150
ball 2 1.113 0.083 0.030 1355 1186 1.49E-05 5 150
ball 4 1.114 0.113 0.075 1751 1252 1.85E-05 5 150
ball 8 1.113 0.221 0.267 2547 1394 2.98E-05 5 150
ball 16 1.115 0.691 0.219 4518 1832 1.54E-05 5 150

FMM3D
#pts ×105 setup(s) matvec(s) mem(MB) relerr degree rank

sphere 1 0.041 0.120 238 8.81E-06 15 256
sphere 2 0.085 0.163 414 8.88E-06 15 256
sphere 4 0.183 0.329 747 9.41E-06 15 256
sphere 8 0.441 0.626 1397 8.61E-06 15 256
sphere 16 1.025 1.259 2784 9.56E-06 15 256

ball 1 0.042 0.167 302 6.55E-06 15 256
ball 2 0.081 0.168 353 6.85E-06 15 256
ball 4 0.170 0.192 554 6.77E-06 15 256
ball 8 0.443 1.266 1830 6.84E-06 15 256
ball 16 0.955 1.261 2025 6.75E-06 15 256
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Table 5.4: Numerical results of the three libraries with relative accuracy around 10−8.

H2Pack
#pts ×105 precomp(s) setup(s) matvec(s) mem(MB) storage(MB) relerr max/avg rank

sphere 1 0.349 0.095 0.006 778 47 1.20E-08 77/39
sphere 2 0.419 0.143 0.012 717 90 1.43E-08 78/36
sphere 4 0.612 0.199 0.023 908 176 1.74E-08 78/36
sphere 8 0.727 0.326 0.047 1320 352 1.83E-08 79/37
sphere 16 0.948 0.589 0.097 2046 687 2.04E-08 77/36

ball 1 0.417 0.135 0.021 857 137 1.71E-08 194/96
ball 2 0.352 0.247 0.044 1294 331 1.68E-08 201/78
ball 4 0.339 0.312 0.078 1652 561 2.19E-08 203/94
ball 8 0.500 0.417 0.141 2246 984 2.58E-08 206/90
ball 16 0.438 1.190 0.340 4642 2362 3.07E-08 205/78

PVFMM
#pts ×105 precomp(s) setup(s) matvec(s) mem(MB) storage(MB) relerr degree rank

sphere 1 2.981 0.048 0.030 1397 1211 2.35E-08 8 384
sphere 2 2.967 0.089 0.052 1597 1266 2.46E-08 8 384
sphere 4 2.966 0.138 0.122 2112 1358 1.75E-08 8 384
sphere 8 2.966 0.471 0.201 3288 1574 2.57E-08 8 384
sphere 16 2.967 0.658 0.420 4927 1994 2.70E-08 8 384

ball 1 2.970 0.043 0.041 1233 1205 3.57E-08 8 384
ball 2 2.957 0.087 0.058 1530 1264 2.48E-08 8 384
ball 4 2.955 0.115 0.118 1948 1331 3.55E-08 8 384
ball 8 2.959 0.336 0.330 2800 1477 4.07E-08 8 384
ball 16 2.954 0.883 0.454 5052 1971 3.97E-08 8 384

FMM3D
#pts ×105 setup(s) matvec(s) mem(MB) relerr degree rank

sphere 1 0.041 0.156 298 1.10E-08 21 484
sphere 2 0.084 0.295 454 1.21E-08 21 484
sphere 4 0.184 0.535 860 1.14E-08 21 484
sphere 8 0.418 1.099 1615 1.19E-08 21 484
sphere 16 1.027 2.138 3235 1.28E-08 21 484

ball 1 0.042 0.172 366 1.13E-08 21 484
ball 2 0.081 0.210 359 1.10E-08 21 484
ball 4 0.171 0.863 632 1.11E-08 21 484
ball 8 0.452 1.037 2113 1.11E-08 21 484
ball 16 0.926 1.322 2330 1.18E-08 21 484
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Table 5.5: Numerical results of the three libraries with relative accuracy around 10−11.

H2Pack
#pts ×105 precomp(s) setup(s) matvec(s) mem(MB) storage(MB) relerr max/avg rank

sphere 1 0.962 0.159 0.009 1222 114 5.66E-12 165/73
sphere 2 1.018 0.203 0.019 1160 236 6.06E-12 165/70
sphere 4 1.151 0.292 0.035 1616 437 7.90E-12 165/69
sphere 8 1.022 0.493 0.072 2398 864 8.43E-12 165/69
sphere 16 1.728 0.903 0.144 4035 1707 9.13E-12 166/68

ball 1 0.906 0.590 0.035 1676 391 2.35E-12 444/184
ball 2 0.873 0.847 0.082 2270 796 6.65E-12 450/109
ball 4 0.792 1.502 0.177 3590 1604 9.93E-12 444/168
ball 8 1.011 2.438 0.305 5426 2709 1.86E-11 450/167
ball 16 0.941 4.057 0.633 9442 5539 2.50E-11 449/109

PVFMM
#pts ×105 precomp(s) setup(s) matvec(s) mem(MB) storage(MB) relerr degree rank

sphere 1 9.700 0.055 0.054 1953 1445 1.29E-11 12 864
sphere 2 9.559 0.104 0.126 2196 1517 1.47E-11 12 864
sphere 4 9.558 0.159 0.234 2555 1624 9.75E-12 12 864
sphere 8 9.562 0.600 0.491 3535 1893 1.44E-11 12 864
sphere 16 9.575 1.014 0.890 5496 2392 1.69E-11 12 864

ball 1 9.547 0.056 0.060 1527 1434 2.76E-11 12 864
ball 2 9.578 0.158 0.151 2086 1510 2.22E-11 12 864
ball 4 9.652 0.180 0.181 2514 1578 2.73E-11 12 864
ball 8 9.595 0.410 0.430 3552 1880 4.31E-11 12 864
ball 16 9.607 0.784 1.123 5544 2351 2.17E-11 12 864

FMM3D
#pts ×105 setup(s) matvec(s) mem(MB) relerr degree rank

sphere 1 0.034 0.272 278 9.90E-12 29 900
sphere 2 0.078 0.472 553 1.08E-11 29 900
sphere 4 0.167 0.899 907 1.09E-11 29 900
sphere 8 0.375 1.698 1780 1.12E-11 29 900
sphere 16 0.917 3.541 3366 1.11E-11 29 900

ball 1 0.037 0.238 208 9.55E-12 29 900
ball 2 0.098 0.522 678 1.07E-11 29 900
ball 4 0.163 0.654 728 1.10E-11 29 900
ball 8 0.346 2.117 994 1.08E-11 29 900
ball 16 0.947 3.106 4502 1.14E-11 29 900

131



5.5 Conclusion

H2Pack provides linear-scaling matrix-vector multiplication for kernel matrices defined by

non-oscillatory kernel functions. Such multiplications are needed on their own in many

applications, but can also be used in iterative solvers for kernel matrix systems. The critical

step for linear-scaling matrix-vector multiplication is constructing the H2 matrix represen-

tation of the kernel matrix. In H2Pack, this is done by using the recently-developed proxy

point method. The advantages of using the proxy point method are (1) greater generality

compared to other methods (e.g., it works for Gaussian kernels), and (2) more effective

block low-rank compression compared to analytic methods such as those used in FMM.

The latter is what makes H2Pack matrix-vector multiplication faster than kernel summa-

tion in FMM libraries. On the other hand, constructing the H2 matrix representation in

H2Pack is often more expensive than the setup phase in FMM libraries.

We have focused on translationally-invariant kernels. This allows the proxy points for

each box (in a given level of the partition tree) to be translates of each other, thus reducing

the overall cost of proxy point selection. We have also focused on 2D and 3D problems,

as is common for FMM libraries. H2Pack can be extended to higher dimensions if a cheap

method of selecting proxy points in higher dimensions is available.

In standard H2 matrix representations, blocks of the matrix are either admissible (repre-

sented as a low-rank block) or inadmissible (represented as a dense block). In H2Pack, we

introduce the concept of partially admissible blocks. Such blocks arise with non-uniform

distributions of points, leading to non-perfect partition trees. By treating partially admis-

sible blocks in the appropriate way (rather than as either admissible or inadmissible), the

representation of these blocks is more efficient. The same technique exists in FMM libraries

but not in existing H2 matrix libraries.

H2Pack has been optimized for high-performance on shared-memory parallel comput-

ers. Important considerations are vectorization of kernel function evaluations, reducing
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memory traffic, and load balancing. Just-in-time and ahead-of-time modes are provided

to trade computation with storage and memory traffic. Vectorization of kernel function

evaluations is particularly important in just-in-time mode, and a kernel function interface

is described. Numerical tests show good scaling of H2Pack matrix-vector multiplication

with the number of cores. For constructing the H2 matrix representations, the performance

with large numbers of cores is limited by the high memory bandwidth requirement of the

column-pivoted QR factorization used in the code.
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CHAPTER 6

CONCLUSION

One of the major challenges of scaling matrix computations to massively parallel computers

is reducing communication costs. Communication-avoiding and communication-reducing

algorithms address this challenge. While many algorithms and theoretical analyses for par-

allel dense-dense matrix multiplication have been proposed in the past fifty years, there

is still a gap between the theoretically communication-optimal algorithm and the parallel

implementation. Parallelizing dense-sparse multiplication is more challenging than paral-

lelizing dense-dense matrix multiplication since the sparsity introduces a vast design space

of parallelization. Many methods have also been proposed for compressing and using ker-

nel matrices, a special classic of dense matrices. The lack of a high-performance, multi-

purpose library hinders the efficient use of kernel matrices in many applications. In this

dissertation, we make important steps to address these issues. Here, we summarize the

main contributions of this dissertation and future work.

6.1 Communication-Avoiding 3D Matrix Multiplication

In this work, we propose the CA3DMM algorithm, a simple and scalable parallel dense

general matrix multiplication algorithm based on a unified view of parallel matrix mul-

tiplication. The unified view allows CA3DMM to reduce to 1D, 2D, or 3D algorithms

for different problem dimensions and different numbers of processes to achieve optimal or

near-optimal communication costs. Experimental results show that CA3DMM outperforms

state-of-the-art methods, further supporting the theoretical analysis.

The current design of CA3DMM has two major limitations, and we plan to address

these issues in our future work. The first issue is memory usage. CA3DMM consumes

more memory than 2D algorithms to reduce communication costs. We plan to make the
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CA3DMM algorithm more flexible to operate under a given memory size constraint and

trade between memory usage and communication costs. The second issue is reducing the

matrix distribution conversion costs since CA3DMM employs special 2D distributions for

input and output matrices. Converting from a natural 1D/2D distribution or a widely used

2D block-cyclic distribution to the internal distributions could be expensive.

6.2 Hybrid Polar Decomposition

In this work, we review different iterative methods for computing polar decomposition and

propose multiple hybrid approaches for scaling up polar decomposition on large parallel

computers. The HPD approach utilizes the differences in the scalability of different ba-

sic linear algebra operations and the differences in the convergence behaviors of different

iterative PD methods. By adopting the CA3DMM algorithm and a new parallel matrix

column orthonormalization algorithm, HPD demonstrates better parallel performance and

scalability than existing ScaLAPACK-based parallel PD implementations.

Experiment results also suggest some future research topics for us. Firstly, the parallel

efficiency of the new column orthonormalization algorithm is not satisfactory, while col-

umn orthonormalization is necessary for high-accuracy PD calculation. Secondly, if we can

improve the accuracy of the blocked Gauss-Jordan algorithm, the scaled Newton method

can be more competitive since it runs much faster than the QDWH method.

6.3 Communication-Reduced Parallel SpMM

In this work, we analyze the vast design space of parallel SpMM algorithms, formulate

communication cost models for different parallelization schemes, and propose CRP-SpMM

for optimizing the process grid geometry and reducing communication costs. CRP-SpMM

reuses existing 1D parallel algorithms for SpMV and can benefit from research in (hy-

per)graph partitioning and other sparse matrix partitioning methods. Experimental results

show that CRP-SpMM can find better process grids that reduce the total communication
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size even when high-quality 1D row partitionings are used as baselines. Our implementa-

tion also significantly outperforms existing distributed-memory parallel SpMM codes.

We plan to improve CRP-SpMM in the following aspects in future research. Firstly,

the current algorithm for computing new 1D partitionings from the baseline partitioning

should be enhanced to calculate new 1D partitionings with smaller communication costs.

Secondly, we are considering extending CRP-SpMM to support generalized 3D paralleliza-

tion, which requires careful redesign and implementation of the process grid search algo-

rithm. Shifting from a generalized 2D algorithm to a generalized 3D algorithm may further

reduce communication costs and improve parallel performance. Lastly, we can adopt low-

level optimizations to enhance the performance of CRP-SpMM.

6.4 H2Pack

We present the H2Pack library, a high-performance multi-purpose library for kernel ma-

trices defined by translationally invariant kernels and low-dimensional (2D/3D) problems.

We discuss multiple optimization techniques used in H2Pack for efficient H2 matrix con-

struction and multiplication of a H2 matrix with a dense vector or matrix. Numerical

experimental results show that H2Pack can achieve high accuracy and outperforms state-

of-the-art FMM libraries in certain application scenarios.

We are working on adopting the algorithms and techniques in H2Pack to a new package

designed for Gaussian Process calculations. In the training of GPs, the kernel function

parameters are updated rapidly, and the kernel matrix changes accordingly. Therefore, a

faster H2 matrix construction algorithm for both low-dimensional and high-dimensional

data points and its parallel implementation need to be developed.
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