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SUMMARY

Quantum chemistry is a mature area of computational science with many methods and

codes developed that are used across chemistry, biochemistry, and materials science. Opti-

mizing computational kernels in quantum chemistry calculations is usually challenging due

to the high complexity of the algorithms and also the high complexity of modern computer

hardware. This thesis focuses on optimizing the performance of three important computa-

tional kernels in quantum chemistry calculations.

We first optimize electron repulsion integral (ERI) calculations for Gaussian basis sets.

A batching scheme for ERI calculations is designed that better utilizes vector processing

units in a processor to calculate multiple ERIs simutaneously. With the optimized ERI

calculations, the tensor contraction in Fock matrix construction can become the perfor-

mance bottleneck. We design a thread-safe algorithm along with specific optimizations

to improve the performance of shared-memory Fock matrix construction. For distributed-

memory Fock matrix construction, we design a new portable partitioned global address

space (PGAS) framework called GTMatrix. GTMatrix has better communication perfor-

mance compared to the Global Arrays library which is a commonly used PGAS framework

in quantum chemistry programs. Finally, we optimize density matrix purification, which is

a method of constructing the density matrix directly from the Fock matrix. We present the

new idea of overlapping communications with communications to accelerate matrix-matrix

multiplications in density matrix purification.

We implement the optimizations in the GTFock library. GTFock is a high-performance

Fock matrix construction library with a Hartree-Fock self-consistent field (SCF) demo pro-

gram. Test results show that optimized GTFock is up to three times faster when performing

an SCF iteration compared to the unoptimized version.

xi



CHAPTER 1

INTRODUCTION

In quantum chemistry calculations, the Hartree-Fock (HF) method [1] is a fundamental

and widely used method for approximately solving the electronic Schrödinger equation. In

HF calculations, the construction of the Fock matrices (Coulomb and exchange matrices)

and the density matrix consume more than 99% of the runtime. Fock matrices also arise

in Density Functional Theory (DFT) [2], another highly accurate and popular method for

electronic structure calculations. The construction of Fock matrices uses ERI calculation

and tensor contraction kernels. The construction of density matrix requires eigenvalue

computation. In this thesis, we focus on optimizing the performance of these three kernels.

Among these three kernels, ERI calculations are the most irregular and challenging to

optimize when using the Guassian basis sets. An ERI describes the Coulombic interaction

between two electrons in terms of four basis functions

(MN|PQ) =
∫

φM(~x1)φN(~x1)
1

r12
φP(~x2)φQ(~x2)d~x1d~x2 (1.1)

where the (MN|PQ) is notation denoting a specific ERI and r12 is the distance between the

two electrons at ~x1 and ~x2. In particular, the ERI algorithms are recursive and loops have

small trip counts, making efficient vectorization very difficult.

Previous attempts to improve the vector performance of ERI libraries took the approach

of restructuring loops to make them vectorizable, annotating code to help the compiler auto-

vectorizer, as well as hand-coding with intrinsics [3, 4]. However, the resulting vectoriza-

tion efficiency was still poor, because the recursions and short loops of the ERI algorithms

could not be addressed without a drastic code transformation or rewrite.

Recently, a library for ERI calculations, called Simint [5], was developed with the goal
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obtaining high vector efficiency. Simint is based on the idea of simultaneously computing

the components of an ERI, called primitive integrals, that have the same code path. Bench-

marks showed superior performance of the Simint library over existing ERI libraries and

this performance improvement could be directly attributed to improved vector performance.

However, ERIs may only have a single or small number of primitive integrals, which

would give Simint little or no advantage over other ERI libraries in this case. Our solu-

tion here is to batch together the computation of multiple ERIs, simultaneously computing

primitive integrals for these multiple ERIs, as long as the computation of these primitive

integrals share the same code path. With enough primitive integrals, the vector loop com-

puting the primitive integrals can become much more efficient.

Once ERIs are computed, they are used to construct the Fock matrix. Blocks of the

Fock matrix F is constructed by contracting 4D ERI tensors with the density matrix

FMN = Hcore
MN +∑

PQ
DPQ{2(MN|PQ)− (MP|NQ)}, (1.2)

where Hcore is a precomputed, fixed matrix, D is the density matrix, and (MN|PQ) is a shell

quartet of ERIs. In the past, the performance of Fock matrix accumulation has not been

critical since the ERI calculations are dominant. With more efficient ERI calculation, the

runtime of Fock matrix accumulation may exceed the runtime of ERI calculations. Thus, it

is essential to optimize Fock matrix accumulation.

For shared-memory programs, the performance of Fock matrix accumulation has not

been critical in the past since the ERI calculations are dominant. We found that with more

efficient ERI calculation and larger numbers of threads, the runtime of shared-memory

parallel Fock matrix accumulation may exceed the runtime of ERI calculations, especially

when using basis sets that has small numbers of basis functions per atom [6]. We optimize

the shared-memory parallel Fock matrix accumulation from three different aspects: (1) us-

ing a combination of multiple-level thread-local buffer and atomic operation to guarantee
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thread-safety as well as reduce the usage of atomic operations, (2) packing the density ma-

trix to increase data access locality, and (3) specializing kernels to reduce the vectorization

overhead.

For distributed-memory programs, Fock matrix accumulation is usually performed us-

ing two steps: each process accumulates its ERI results into its local Fock matrix buffer,

then the results in each process’s local buffer are accumulated to obtain the final Fock ma-

trix. The inter-process data exchange in the second step is usually handled by a partitioned

global address space (PGAS) framework. We design a new PGAS framework called “GT-

Matrix” as a new option for distributed-memory Fock matrix construction. GTMatrix can

also be used in other applications. GTMatrix is written in C and uses only MPI functions

to provide fundamental functionality. However, test calculations show that GTMatrix can

be up tp 45% faster compared to the Global Arrays [7] (GA) library.

After building the Fock matrix F , the density matrix D is constructed using the eigen-

vectors of F : let Cocc be a matrix formed by nocc lowest energy eigenvectors of F , D =

XCoccCT
occXT, where X is a precomputed, fixed basis transformation matrix. Traditionally,

an eigendecomposition of F is performed to obtain Cocc, which is the performance bottle-

neck in many DFT codes and electronic structure methods. Instead of eigendecomposition,

D can be computed directly from F by using the density matrix purification iteration [8]

Dk+1 = 3D2
k−2D3

k , (1.3)

where the initial approximation D0 is an appropriately scaled and shifted version of F . This

iteration has many practical variations, but all the variations involve matrix squaring and

cubing, or forming even higher matrix powers. In linear scaling DFT, the density matrices

are large and sparse [9]. In HF calculations, the density matrices have modest size in

comparison and are best treated as being dense. In this case, eigendecomposition can be

used to compute the density matrices, but eigendecomposition cannot scale as well as dense

3



matrix multiplication in purification methods when using thousands of processors [10].

The bottleneck of distributed-memory matrix multiplication is internode communica-

tion performance. To better exploit communication resources, we explore the idea of over-

lapping communications with communications. Here, communication operations are over-

lapped with other communication operations. This allows actual data transfer in one op-

eration to be overlaped with synchronization or other overheads in another operation, thus

making more effective use of the available network bandwidth. We discuss two techniques

for overlapping communication operations in this thesis: nonblocking operation overlap

and multiple MPI process per node (PPN) overlap. Our results will show that combining

the two techniques appears to give the best performance results.

We implemented all these optimizations in GTFock [11, 10, 4], a recently developed

high-performance library for Fock matrix construction. Test calculations were performed

to show the effect of optimizations for each kernels and the overall speedup of Fock matrix

construction and SCF iterations.
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CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Vectorization of ERI Calculations

The solution to a quantum chemistry problem can be expressed in terms of basis functions

φi, with 1 ≤ i ≤ n for n basis functions. “Gaussian” basis functions are most common,

particularly for molecular systems, and are the target of this work, although other types

of basis functions, such as plane waves and wavelets [12], are also used, particularly for

materials systems.

Each Gaussian basis function is a linear combination (or “contraction”) of known prim-

itive functions, χMµ , i.e.,

φM =
KM

∑
µ

cMµ χMµ

(similarly for the other functions φN , φP, and φQ). Thus, the integral 1.1, which can be

called a contracted integral for clarity, is the result of a four-fold sum,

(MN|PQ) =
KM

∑
µ

KN

∑
ν

KP

∑
λ

KQ

∑
σ

cMµcNνcPλ cQσ [χMµ χNν |χPλ χQσ ]

where [χMµ χNν |χPλ χQσ ] in square brackets denotes a primitive integral. It is these prim-

itive integrals involving recursive calculations that are difficult to vectorize. In the above

example, the contracted integral is the sum of KMKNKPKQ primitive integrals. Nominally,

n4 ERIs must be computed, a potentially very large number. Neglect of small ERIs, called

screening, and exploiting symmetries such as (MN|PQ) = (NM|PQ) = (PQ|NM) are nec-

essary in practical implementations.

A basis set is a specification of the basis functions to use for different atomic species

in a molecule. Some basis sets are highly contracted, meaning its basis functions are sums
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of many primitive functions (up to a dozen or more), whereas others are lightly contracted,

meaning its basis functions are mostly represented by a single primitive function.

A basis function is characterized by its angular momentum (AM), which can take on

values 0,1,2,3,4, . . ., denoted as s, p,d, f ,g, . . ., respectively. The primitive functions com-

prising a basis function have the same AM as the basis function. Since an integral is

associated with four basis functions, an integral is also associated with four AM numbers,

e.g., (ss|pd), where the bracket notation has been overloaded, and denotes the AM class of

an integral.

Vectorization of ERI calculations has been considered since the era of pipelined vector

supercomputers. On the CRAY-1, Saunders and Guest [13] proposed vectorizing primitive

integral calculations for low AM cases, where the shell quartet structure, which complicates

vectorization, could be ignored without too high a cost. For the high AM cases, it was

suggested to vectorize the contractions. On the Alliant FX-8, Gill, Head-Gordon, and Pople

[14] also proposed vectorizing primitive integrals. Here, contractions could be performed

early or late in the algorithm depending on AM class. In the mid 1990s, Wolinski et al. [15]

proposed batching contracted integrals in the TEXAS code to improve performance in the

same vein as using BLAS constructs.

The above programs are legacy Fortran codes using common blocks. The TEXAS in-

tegral module, however, was recently converted to be used in a multithreaded environment

[16] and is still the default integral library in NWChem [17]. Despite its design, however,

Shan et al. [3] found vectorization performance to be very poor: “Via substantial program-

ming effort, we obtained a vectorized version running approximately 25% faster compared

to non-vectorization mode on the MIC and BG/Q platforms.”

Libint2 [18], one of the integral libraries used in GAMESS [19], has experimental ca-

pability to vectorize across contracted integrals, but does not appear to be used this way.

Vectorizing across contracted integrals poses several challenges, including the implemen-

tation of primitive integral screening, much larger working set size than vectorizing across
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primitive integrals, and needing to not only batch integrals with the same AM class but also

the same contraction pattern, KM, KN , KP, KQ.

In the last decade, there has also been extensive interest in computing ERIs on GPUs

[20] [21] [22] [23] [24] [25]. Here, research addressed the use of single precision, the

host-device bottleneck, and whether to vectorize primitive or contracted integrals. Some

of the codes developed are limited to low AM functions as limited device memory makes

simultaneous computation of large numbers of high AM integrals very challenging. These

works also appeared to ignore practical issues such as integral screening and exploitation

of symmetry, which would introduce thread divergence.

Ramdas and co-authors [26, 27, 28] discuss the advantages of batching ERIs of the same

AM class, such as instruction and data cache exploitation, and propose batching algorithms

that can be implemented on FPGAs, but there are few details on actual implementations.

The Simint library vectorizes the computation of primitive integrals of the same class.

For the computation of the specific ERI (MN|PQ), the number of primitive integrals is

KMKNKPKQ. Three cases are illustrated in Figure 2.1. For lightly contracted basis sets

(a), the number of primitive integrals may be as small as 1, and thus no vectorization is

possible. Even for moderately contracted basis sets (b), SIMD utilization may be poor

because a large proportion of the integrals is calculated outside the SIMD loop. For highly

contracted basis sets (c), SIMD utilization is good. Thus, for good performance for all basis

sets, particularly lightly contracted basis sets, it is necessary to batch together contracted

integrals of the same class and compute their primitive integrals in the same SIMD loop.

2.2 Parallel Fock Matrix Construction Algorithms

Practically most quantum chemistry software implement parallel Fock matrix construction

subroutines. Some quantum chemistry software implement Fock matrix construction with

distributed-memory computation to obtain better performance, for example, NWChem [17],

GAMESS [19], ACESIII [29], and MPQC [30]. Some quantum chemistry packages like

7



(a) Single primitive integral: poor SIMD utilization

(b) Small number of primitives: generally poor SIMD utilization

(c) Large number of primitives: good SIMD utilization

Figure 2.1: Different numbers of primitive integrals calculated using SIMD vectorization
using the example of 4 doubles per SIMD word. (Primitive integrals occupying lanes of
a SIMD word are shown with red shading.) For high SIMD utilization, a large number of
primitive integrals of the same AM class are necessary.

PSI4 [31] and pySCF [32] do not have distributed-memory implementation, but they are

easier to use and to extend with Python programming interfaces. In this section, we discuss

two major challanges in parallel Fock matrix construction and their solutions.

2.2.1 Task Partitioning and Scheduling of ERI Calculations

The first challange of parallel Fock matrix construction is partitioning shell quartets that

survive screening and uniqueness (“valid” shell quartets) to all processes and/or threads

such that the workload on each process or thread is approximately balanced. Usually,

shared-memory multithreaded programs solve this problem easily with a shared-memory

dynamic task scheduler, for example, the OpenMP dynamic loop scheduler. For distributed-

memory parallel programs, this problem is the key for parallel scalability.

For distributed-memory Fock matrix construction, there are two ways to distribute the

valid shell quartets to different processes. The first approach is using a dynamic scheduling

algorithm to schedule “workload units” to each process, where each workload unit is a set

of shell quartets. This approach is easy to balance the load and it is used by NWChem and

GAMESS. In NWChem, a minimal work unit is defined to be valid shell quartets that all

shells belong to 5 atoms. In GAMESS, a work unit is defined as a 2D slice (M,N| :, :) of

the 4D shell quartet tensor for the pure MPI version, or a 3D slice (M, : | :, :) of the 4D shell

quartet tensor for the MPI+OpenMP version [33]. This approach has two major problems:

(1) the centralized dynamic scheduler is very likely to be a performance bottleneck when
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the program is run on a large number of cores, and (2) since the workload unit scheduling is

completely dynamic, processes cannot prefetch all the blocks of D used in a workload unit.

The second approach is to statically partition the valid shell quartets among processes. The

advantage of this approach is that the necessary communication is known before calculation

starts. Therefore, the partitions can be chosen to reduce the communication volume and

each process can prefetch all D blocks needed by this process. However, load balance is

difficult to achieve in this approach.

To be run on a large number of nodes efficiently on supercomputers, GTFock uses a

hybrid approach for ERI calculation task partitioning and scheduling. In GTFock, a static

partitioning with approximately balanced workload is used to reduce communication, a

dynamic work stealing stage is used to polish the load balance. Specifically, a node steals

work from another node when it finishes its allocated work. A basic work unit used by the

work stealing scheduler is called a task, a 2D slice of the 4D shell quartet tensor:

(Mi, : |Pk, :)≡ {(MN|PQ),s.t.

M ∈Mi,P ∈Pk, for all N,Q},

i ∈ {1, . . . , pr}, j ∈ {1, . . . , pc}.

The static partitioning of GTFock seeks to find a set of Mi and Pk s.t. the number of

non-screened shell quartets in each task is better balanced. To achieve this, GTFock first

calculates the significant set, which is based on the shell quartet screening, of each shell:

σ(P,Q) = max
i∈P, j∈Q

(i j|i j), m∗ = max
P,Q

σ(P,Q),

Φ(M) = {N s.t. σ(M,N)≥ τ
2/m∗},

and η(M) is the size of Φ(M). η(M)η(P) is an upper bound and a good estimation of the

number of non-screened shell quartets in slice (M, : |P, :). For p2 processes and k2 tasks

per process, the shells can be divided into kp subsets, with the i-th subset denoted as Gi.
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GTFock choose the subsets such that the sum of the η(M) for each subset is approximately

the same,

∑
M∈Gi

η(M)≈ (∑η(M))/p.

The partitions of task can be indexed by (i, j) with i, j ∈ [1,kp]. Then slice (M, : |P, :)

is assigned to task (i, j) if M ∈ Gi,P ∈ G j. Thus, the number of shell quartets survived

screening is approximated balanced in each task.

GTFock uses a hierarchical stealing scheme for efficient dynamic work scheduling.

The process in GTFock are arranged in a logical pr× pc process grid. A global array W is

used to indicate which process group still have works. All elements in W is set to 1 at the

beginning. When a process need to steal a task, it will first find a process group that still

have works. Then, a victim process is selected randomly in the chosen process group and

half of the victim’s remaining tasks are stolen. Compared to directly find a victim process

and steal its work, this hierarchical stealing scheme largely reduce the number of failed

steals and the communication cost of task stealing.

2.2.2 Parallel Fock Matrix Construction Using ERI Results

The second problem of parallel Fock matrix construction is accumulating ERI results in

parallel to build the Fock matrix and handling the race condition in the parallel accumu-

lation. The data access patterns in constructing the Fock matrix is highly irregular due to

the intrinsic structure of molecules and the shell quartet screening. Therefore, it is hard to

know the update time of any given block in the Fock matrix in advance and totally remove

the race condition when multiple processes or threads are updating the Fock matrix at the

same time.

For shared-memory programs, two approaches can be used for Fock matrix construc-

tion: (1) each thread accumulates its ERI results into a thread-private Fock matrix buffer
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and sums the results in all thread-private buffers in the last step, and (2) each thread accu-

mulates its ERI results to a shared Fock matrix using atomic operations. The PSI4 pack-

age [31] implemented the first approach and uses atomic operations for summing thread-

private results. The GAMESS package implemented both approaches in its MPI+OpenMP

version. Performance tests show that the private Fock buffer approach is faster than the

shared Fock matrix approach in GAMESS due to less thread contention; as the penalty,

the private Fock buffer approach has larger memory consumption and poorer multi-node

scalability compared to the shared Fock matrix approach [33].

For distributed-memory programs, Fock matrix accumulation is usually performed us-

ing two steps: each process accumulates its ERI results into its local Fock matrix buffer,

then the results in each process’s local buffer are accumulated to obtain the final Fock ma-

trix. The inter-process data exchange in the second step is usually handled by a PGAS

framework, for example, the Global Arrays library.

2.3 Parallel Matrix Multiplication Algorithms

Parallel matrix multiplication can be categorized into 2D, 3D, and 2.5D algorithms. In

2D algorithms, a 2D partitioning of the matrix is used and processes are organized in a 2D

mesh. The Scalable Universal Matrix Multiplication Algorithm (SUMMA) [34] is the most

widely used 2D algorithm.

To reduce the communication cost, 3D algorithms [35, 36] use a 3D partitioning of

work and organize the processes in a 3D mesh. These algorithms use more memory than

2D algorithms; each input matrix is replicated across one dimension of the process mesh.

Compared to 2D algorithms, the communication cost of 3D algorithms is reduced from

O(N2/P1/2) to O(N2/P2/3), where N is the matrix dimension and P is the number of pro-

cesses. As a trade-off, the memory requirement of 3D algorithms is raised from O(N2/P)

to O(N2/P2/3).

2.5D algorithms [37] bridge the gap between 2D and 3D algorithms, allowing the user
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to choose how much memory to use to reduce communication. A parameter c is introduced

in 2.5D algorithms to control the number of replicated copies of the input matrices, up to

the limit corresponding to 3D algorithms.

The algorithms described so far are designed for general dense matrices. For general

sparse matrix multiplication, SUMMA has been extended in SpSUMMA [38, 39], using

doubly compressed sparse column (DCSC) storage format and sparse generalized matrix

multiplication (SpGEMM) for local matrix multiplication. Matrix multiplication for block-

rank-sparse matrices in quantum chemistry have also been developed using a task-based

approach [40].
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CHAPTER 3

ACCELERATING ERI CALCULATIONS WITH VECTORIZED AND BATCHED

INTEGRALS

3.1 Simint Low-level Optimizations for Vectorization

Simint is a vectorized implementation of the Obara-Saika (OS) algorithm [41, 42, 43, 14,

44, 45] for computing ERIs. In the OS algorithm, an integral with angular momentum

(AM) class (i j|kl) can be computed using recurrence relations involving auxiliary integrals

with lower AM class, i.e., involving functions with lower AM. To give a conceptual but not

precise description below, we denote an auxiliary integral of class (i j|kl) as Θ
(N)
i jkl where the

index N equals 0 for the desired target integral.

To compute Θ
(0)
i jkl , multi-dimensional recurrence relations are used, where the base of

the recursions are Θ
(N)
0000 for any value of N, which are called Boys functions of order N,

and which can be computed directly. The recurrence relations can be organized into vertical

recurrence relations (VRR) and horizontal recurrence relations (HRR) and can be used as

follows.

To compute Θ
(0)
i jkl , one begins by computing Θ

(m)
i+ j,0,0,0 via a recurrence relation known

as a bra-side (i.e., left-hand side) VRR, and then computing Θ
(m)
i+ j,0,k+l,0 via a ket-side (i.e.,

right-hand side) VRR, followed by computing Θ
(m)
i, j,k+l,0 via a bra-side HRR, and finally by

computing Θ
(m)
i, j,k,l by a ket-side HRR. For reference, these recurrence relations are:

Bra-side VRR:

Θ
(N)
i+1,0,0,0 = XPAΘ

(N)
i,0,0,0−

α

p
XPQΘ

(N+1)
i,0,0,0 +

i
2p

(
Θ
(N)
i−1,0,0,0−

α

p
Θ
(N+1)
i−1,0,0,0

)
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Ket-side VRR:

Θ
(N)
i,0,k+1,0 =XQCΘ

(N)
i,0,k,0−

α

q
XPQΘ

(N+1)
i,0,k,0 +

k
2q

(
Θ
(N)
i,0,k−1,0−

α

q
Θ
(N+1)
i,0,k−1,0

)
+

i
2(p+q)

Θ
(N+1)
i−1,0,k,0

Bra-side HRR:

Θ
(N)
i, j+1,k,l = Θ

(N)
i+1, j,k,l +XABΘ

(N)
i, j,k,l

Ket-side HRR:

Θ
(N)
i, j,k,l+1 = Θ

(N)
i, j,k+1,l +XCDΘ

(N)
i, j,k,l.

In the above, XPA, etc., are parameters that depend on the atomic coordinates of the molec-

ular system, and p, q, α , are parameters of the basis functions. The index m above denotes

an appropriate range of indices for auxiliary integrals that must be computed.

Simint applies the VRRs to SIMD words rather than regular double-precision words,

i.e., to 8 doubles at a time in the case of AVX-512. One could also apply the HRRs to

SIMD words, however, since the HRRs do not involve parameters that depend on the basis

functions, the primitive integrals can be contracted at this point, before the HRRs, thus

saving computation and storage. Thus the HRRs are not perfectly vectorized, but some

auto-vectorization of the bra-side HRR is possible. Consequently, the vector efficiency of

Simint depends on the AM class, with classes involving more VRRs than HRRs being more

efficient.

3.1.1 Optimizing General Functions for High AM Integrals

Simint code is generated, with separate functions for computing integrals of each AM class.

For low AM classes, the recursive operations are expanded explicitly and inlined. For

high AM classes, in order to reduce code size, general functions are used to implement

the VRRs and HRRs involving high AM functions. The following two optimizations are

simple, although they could be easily missed, and give some performance improvement.
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Listing 3.1: General bra-side HRR function
void HRR_J_f_d(const int ncart, double *hAB,

double *fdXX, double *gpXX, double *fpXX)
{

for (int iket = 0; iket < ncart; ++iket)
{

fdXX[0*ncart+iket]=gpXX[0*ncart+iket]+hAB[0]*fpXX[0*ncart+iket];
fdXX[1*ncart+iket]=gpXX[3*ncart+iket]+hAB[1]*fpXX[0*ncart+iket];
fdXX[2*ncart+iket]=gpXX[6*ncart+iket]+hAB[2]*fpXX[0*ncart+iket];
fdXX[3*ncart+iket]=gpXX[4*ncart+iket]+hAB[1]*fpXX[1*ncart+iket];
/ / more c a l c u l a t i o n s ( no s i m p l e p a t t e r n )

}
}

General Bra-side HRR Functions

As an example, the Simint function HRR J f d() computes auxiliary integrals of AM class

( f d|∗∗) from those of classes ( f p|∗∗) and (gp|∗∗) using a bra-side HRR. These functions

can be auto-vectorized by the compiler, but timings show that some AM classes with only

VRRs and bra-side HRRs have poor vectorization speedup, and that the general bra-side

HRR functions consume most of the time. These general bra-side HRR functions accept

a parameter, ncart, to specify the number of basis functions in a shell on the ket side, and

this parameter determines how data is accessed (see Listing 3.1). If this parameter value is

known at compile time, auto-vectorization could be improved.

The parameter ncart only takes on a small set of values. Therefore, we have created

specialized versions of HRR J f d() and other functions for specific values of ncart. These

specialized versions are called from a wrapper function. The general version is kept for

large values of ncart, which are rare. As a result, the compiler can compute all the offsets

of output auxiliary integrals and know the length of the loop at compile time, which reduces

the cost of the loop and leads to better vectorization.
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Listing 3.2: contract all() implementation for AVX-512
inline void contract_all(int ncart, __m512d const *src, double *dest)
{

for (int np = 0; np < ncart; np++)
dest[np] += _mm512_reduce_add_pd(src[np]);

}

General VRR Functions

In Simint, the function ostei general vrr K() implements a ket-side VRR. Profiling found

that this function is a hotspot when the basis set has many high AM shells. This function is

implemented in a general way to open algorithmic options: it can compute (i, j|k+1, l) for

any given i, j,k, l ≥ 0. However, the ket-side VRR in the OS algorithm assumes targets of

the form (i,0|k+1,0). By specializing this function for this case, branches that determine

which recursions to take can be reduced from 16 to 4 and can also be moved from the inner-

most loop to an outer loop. The original general function is retained for use with different

algorithmic options.

3.1.2 Optimizing Contractions for AVX-512

The contraction operation sums primitive auxiliary integrals to form a contracted auxil-

iary integral. In Simint, the contract all() function performs, for a set of SIMD words, a

horizontal reduction of double-precision words in a SIMD word, as shown in Listing 3.2.

Each SIMD word corresponds to a different auxiliary integral, not the same integral. The

contract all() function was measured to be a computational hotspot.

In the AVX-512 case shown in Listing 3.2, contract all(), naturally uses the intrinsic

function mm512 reduce add pd() to sum the components of a SIMD vector. However, an-

alyzing the assembly code for contract all() reveals two problems: (1) mm512 reduce add pd()

does not have a corresponding CPU instruction, but is emulated by 8 instructions; (2) when

ncart > 10, the compiler does not unroll the loop.

Considering that the AVX-512 instruction set has new shuffle instructions and that the
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Listing 3.3: Optimized contract all() implementation for AVX-512
1 inline void contract_all(int ncart, __m512d const *src, double *dest)
2 {
3 int ntrans = ncart / 8;
4 int np_start = ntrans * 8;
5 double tmp[64];
6 __m512d dst[8];
7 / / Transpose−Add p a r t
8 for (int it = 0; it < ntrans; it++)
9 {

10 double *src_ptr = (double*)src + it * 64;
11 for (int i = 0; i < 8; i++)
12 {
13 for (int j = 0; j < 8; j++)
14 tmp[i * 8 + j] = src_ptr[j * 8 + i];
15 dst[i] = _mm512_load_pd(tmp + i * 8);
16 }
17 __m512d res = _mm512_loadu_pd(dest + it * 8);
18 for (int i = 0; i < 8; i++)
19 res = _mm512_add_pd(res, dst[i]);
20 _mm512_storeu_pd(dest + it * 8, res);
21 }
22 / / Remainder p a r t
23 for (int np = np_start; np < ncart; np++)
24 dest[np] += _mm512_reduce_add_pd(src[np]);
25 }

Intel compilers can utilize these instructions efficiently [46] [47], we use a novel approach

to accelerate the contract all() function. For a 8× 8 block of double-precision words (8

SIMD words), we first transpose the block, then perform vectorized add for the transposed

vertical vectors. Listing 3.3 is the new, optimized implementation. Lines 11 - 14 transpose a

8×8 block, and line 15 effectively hints to the compiler that the transposed data will be used

immediately and should be kept in registers. As a quick comparison, for a 8×8 block, the

optimized implementation needs 47 CPU instructions, while the original approach needs

16× 8 = 128 CPU instructions. Since ncart is not always a multiple of 8, we use the

original approach for the remainder part.

We also make a special optimization for AM class (ss|ss), since contract all() for (ss|ss)

is a large portion of the runtime when using basis sets with few high AM functions. The

subroutine for computing (ss|ss) calls contract all() with ncart = 1, so the remainder part
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SIMD word

SIMD word

SIMD word

SIMD word
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SIMD word SIMD word
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(skipped)

No  primitive

sorting:

With  primitive

sorting:

Screened primitive Shell pair

Primitives

Figure 3.1: Sorting primitive integrals for primitive screening. Heavy lines delineate prim-
itive integrals corresponding to a ket-side shell pair. An example is shown for a sequence
of 5 ket-side shell pairs with 2, 5, 1, 3, and 5 primitive integrals, respectively. Without
sorting, no SIMD words can be skipped. With sorting, two of the four SIMD words can be
skipped. All four primitives in a SIMD word are screened (shown in gray) when a SIMD
word can be skipped.

in Listing 3.3 would be used. Instead, to use the new approach, we gather 8 SIMD words

corresponding to the same contracted integral, then store the results separately. It should

be noted that this gather-contract-store approach can also be used for other AM classes, but

it would make the code much more complicated, and the cost of extra operations in these

cases may cancel out the saved time.

3.1.3 Sorting for Primitive Screening

Primitive screening is the concept of neglecting the computation of primitive integrals when

they are known to be small. Since the computation of the primitive integrals is vectorized,

primitive screening creates “holes” (screened primitives) in the SIMD words, which are

not handled efficiently. Simint only neglects the computation of primitive integrals if all

primitives in a SIMD word are screened. To improve vectorization efficiency, we sort all

primitives in a shell pair in descending order according to an upper bound based on the

Cauchy-Schwarz inequality. If a primitive involving a shell pair is screened, all primitives

behind it will also be screened. As a result, all neglected primitives will be placed together,

which increases the probability that all primitives in a SIMD word are screened. Figure 3.1

shows the mechanism of sorting for primitive screening in Simint.
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3.2 Batching ERI Calculations to Improve Vectorization

In distributed memory quantum chemistry codes, the set of shell quartets to be computed

is partitioned statically or dynamically among the compute nodes. Within a node, each

thread computes and consumes the integrals for a shell quartet, one shell quartet at a time.

As described in Chapter II, SIMD utilization in Simint for computing ERIs may be poor

when shell quartets are computed one at a time. In this Section, we describe a batching

procedure for shell quartets of the same AM class that is executed on each node. Each

thread will thus compute the integrals for multipleshell quartets as one unit of work and

thus improve SIMD utilization, particularly for lightly contracted basis sets.

The batching procedure has several requirements:

1. Only unique shell quartets are computed, i.e., (MN|PQ) is symmetric with 7 other

shell quartets, for example (NM|QP), and only one of these should be computed.

2. Shell quartets containing integrals that all are small in magnitude are neglected and

the shell quartet is not computed; this is called shell quartet screening and is different

from and used together with primitive integral screening.

3. Batching cannot precompute a list of all shell quartets with the same AM class, as

the large number of shell quartets makes this infeasible.

4. Batching for a given AM class should be handled by a single thread; this maximizes

the number of shell quartets that can be batched together.

3.2.1 ERI Batching Scheme

Our solution is to use a dynamic procedure where queues for each AM class are maintained.

Shell quartets are added to the appropriate queue depending on their AM class, and a full

queue constitutes a batch of shell quartets with integrals to be computed.
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Algorithm 1 shows the procedure. For simplicity, we assume an appropriate partitioning

of the shell quartets among the nodes and that the indices M, N, P, Q are only over the

indices for quartets that are assigned to a node. The M,N loop (line 2) is parallelized with

OpenMP multithreading. Each thread maintains its private shell quartet queues, pushing

all valid shell quartets it encounters to a queue according to the AM of the P and Q shells

(lines 4 - 6). A batch of shell quartets will be submitted to Simint when a queue is full,

then the ERI results are consumed, and this queue is reset (lines 7 - 10). When a thread

has looped over all P,Q pairs for a given M,N pair, it submits all its non-empty queues to

Simint and resets these queues (lines 13 - 16). We note that the procedure is thread-aware

but lock-free.

Algorithm 1 Batched ERI computation
1: Each thread initializes its private queues
2: for shell pairs M,N in parallel do
3: for shell pairs P, Q do
4: if (MN|PQ) is unique and not screened then
5: Compute bra-side shell pair id: id = (P,Q)
6: Push (MN|PQ) to queue q[id]
7: if queue q[id] is full then
8: Compute shell quartets in queue q[id]
9: Reset queue q[id]

10: end if
11: end if
12: end for
13: for a non-empty queue q[i] do
14: Compute shell quartets in queue q[i]
15: Reset queue q[i]
16: end for
17: end for

The shell quartet queues in Algorithm 1 should be long enough to provide good SIMD

efficiency, but very long queues are not necessary. In the experimental tests (see Table 7.6

later in this thesis), we found a queue length of 16 to give good performance.
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3.2.2 ERI Library Issues for Batched Computation

To compute the integrals for a batch of shell quartets, Algorithm 1 calls Simint with the

handle of shell pair (M,N), and a set of handles to shell pairs {(Pi,Qi)} such that all shells

Pi have the same AM and all shells Qi have the same AM. This should be considered the

basic unit of work for a vectorized integral library.

The computation of the ERIs in a shell quartet (MN|PQ) uses some quantities that only

depend on shell pairs (M,N) and (P,Q). These quantities, called shell pair data, can be

precomputed and stored because they are used for multiple shell quartets. If we store shell

pair data, we must gather the appropriate data into a continuous buffer for batched ERI

computation, since the vectorized computation needs the data in this format. Alternatively,

shell pair data can be regenerated every time they are needed.

Let p1 and p2 be the number of primitive functions for two shells in a shell pair. The

store-reuse approach needs to copy 12× p1× p2 double-precision words for this shell pair,

where 12 is the number of arrays in its shell pair data. Regeneration of the shell pair

data only needs to read the coordinates and coefficients data for the two shells, which

is 6+ 2× (p1 + p2) double-precision words. With primitive screening without primitive

sorting, the regeneration approach could be a little faster than the store-reuse approach in

some cases.

To see which approach is more efficient, we tested both these approaches with different

workloads. Experiments showed that storing and reusing all shell pair data is much faster

in most cases. If we disable sorting for primitive screening, recomputing shell pair data is

a little bit faster in a few cases. Therefore, we use the store-reuse approach.

Finally, we note a caveat when using batching with a dynamic distribution of shell

quartets to the compute nodes. When dynamic distribution is used, a task containing some

number of shell quartets is assigned to a node that is free. When ERI computations are

batched, one must make sure that the tasks contain enough shell quartets such that large

enough batches of the same AM class can be formed.
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CHAPTER 4

EFFICIENT SHARED-MEMORY FOCK MATRIX ACCUMULATION

In practice, the Fock matrix is not constructed one block at a time as Equation 1.2 suggests.

Due to the high cost of ERI calculation, a unique shell quartet (MN|PQ) is computed once,

which is equivalent to computing (NM|PQ) and 6 other symmetric shell quartets, and then

contributes to FMN , FMP, FNP, FMQ, FNQ, FPQ are accumulated into F . These six blocks

are all the combinations of choosing pairs of the 4 shell indicies, M, N, P, Q. Since F is

symmetric, FNM, FPM, etc. do not need to be accumulated.

Algorithm 2 shows the basic Fock matrix accumulation procedure after a shell quartet

(MN|PQ) is computed. In the algorithm, ERI denotes the 4-D array storing the results of

ERIs in the shell quartet, with dimensions dimM×dimN×dimP×dimQ. A four-fold loop

iterates over each element in the shell quartet and computes contributions to F . We note that

if the maximun AM of the shell quartets in a given problem is 4, which is not uncommon,

dimX ∈ [1,3,6,10,15],X = M,N,P,Q. Discussion in the rest parts of this section is based

on this algorithm.

4.1 Thread-safe Fock Matrix Accumulation

Since multiple threads are computing shell quartets and accumulating them into a shared

Fock matrix F , a thread-safe Fock matrix accumulation algorithm is needed. Assuming

one copy of F for some set of threads, for thread safety, atomic operations are used to

update FPQ, FMQ, and FNQ (lines 9-11) in Algorithm 2, resulting in 3× dimM× dimN×

dimP× dimQ atomic operations. Updates to FMN , FMP and FNP can be accumulated in

registers, with atomic operations used to accumulate these register values outside the iQ
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Algorithm 2 Fock matrix accumulation, given shell quartet (MN|PQ) with dimensions
dimM×dimN×dimP×dimQ.

1: for iM = 0 to dimM-1 do
2: for iN = 0 to dimN-1 do
3: for iP = 0 to dimP-1 do
4: for iQ = 0 to dimQ-1 do
5: I = ERI(iM, iN, iP, iQ)
6: Update FMN(iM, iN) with DPQ(iP, iQ), I
7: Update FMP(iM, iP) with DNQ(iN, iQ), I
8: Update FNP(iN, iP) with DMQ(iM, iQ), I
9: Update FPQ(iP, iQ) with DMN(iM, iN), I

10: Update FMQ(iM, iQ) with DNP(iN, iP), I
11: Update FNQ(iN, iQ) with DMP(iM, iP), I
12: end for
13: end for
14: end for
15: end for

loop to update F . The total number of atomic operations needed here is

AO1 = 3×dimM×dimN×dimP×dimQ +

2×dimM×dimN×dimP+dimM×dimN.

Our paramount consideration is reducing the usage of atomic operations, which we

find to limit the performance of this approach. Thus, an obvious alternative is to split

Algorithm 2 into six four-fold loops such that each four-fold loop only updates one block

of the Fock matrix. The order of the loops can be exchanged so that atomic operations can

be placed in the second nested loop. Algorithm 3 is an example for FMQ. The calculation

and update of other Fock matrix blocks are similar. After splitting, the total number of

atomic operations becomes the sum of the sizes of six updated blocks

AO2 = dimM× (dimN +dimP+dimQ) +

dimN× (dimP+dimQ)+dimP×dimQ.
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Algorithm 3 Updating FMQ with a separate four-fold loop
1: for iM = 0 to dimM-1 do
2: for iQ = 0 to dimQ-1 do
3: register fMQ = 0
4: for iN = 0 to dimN-1 do
5: for iP = 0 to dimP-1 do
6: I = ERI(iM, iN, iP, iQ)
7: Update fMQ with DNP(iN, iP) and I
8: end for
9: end for

10: atomic add(FMQ(iM, iQ), fMQ)
11: end for
12: end for

As the price of reducing the number of atomic operations, the performance of this new

approach is redundant memory access: it needs to read the entire ERI array six times and

has discontinuous memory access to ERI when updating FMQ, FNQ and FPQ. We want to

find a way that uses only AO2 atomic operations while reading ERI continuously only once.

We observe that AO2 is relatively small in most cases. If the maximum AM of the shells

in a given problem is 4, which is not uncommon, then the maximum size of any dimension

of the ERI array is 15, and thus AO2 ≤ 152× 6 = 1350 doubles. Each thread can use a

thread-local buffer to accumulate the updates of six Fock submatrices and add them to the

shared F at the end. Therefore, we do not need to split the four-fold loop in Algorithm 2

and we can avoid reading ERI multiple times. The buffer for each thread is small enough

(< 11 KB for maximum AM = 4) to fit in the L1 data cache of most processors.

When the ERIs are computed in batched fashion, another optimization allows us to

eliminate about half of the atomic operations. In the batched ERI algorithm, line 3 of

Algorithm 1 actually contains two loops: the outer loop iterates over shell indices P and

the inner loop iterates over shell indices Q. As a result, all shell quartets in a batch have the

same M and N shells and are likely to have only a small number of different P shells.

Suppose that all shell quartets in a batch have the same M, N and P shells. In this case,

all shell quartets in the batch update the same FMN , FMP, FNP. Therefore, the accumulation
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of FMN , FMP, FNP can be performed in the thread-local buffers without atomics until the end

of the batch. Atomics are only used at the end of the batch to accumulate these thread-local

buffers into the shared F . As before, the accumulation of FPQ, FMQ, FNQ needs atomics for

each shell quartet processed. Thus the number of atomic operations can be reduced to

AO3 = dimQ× (dimM+dimN +dimP)

per shell quartet other than the last quartet in a batch. We present this optimized Fock

matrix accumulation procedure in Algorithm 4.

Stepping further from Algorithm 4, we can further reduce the usage of atomic oper-

ations and speed up Fock matrix accumulation by using multi-level thread-private buffer.

We call this new approach “MLBufAcc” for short. Recall the definition of a compute task

in GTFock (see Section 2.2.1). Let UPQ be the total number of unique P index and unique

Q index in a compute task. UPQ ≤ 2× nshell, where nshell is the total number of shells

in the chemical system. More importantly, UPQ is much smaller than the total number of

ket-side shell pair indices |PQ) in a compute task in most cases. Therefore, for a fixed bra-

side shell pair indices (MN|, the total number of unique blocks update by FMN , FMP, FNP,

FMQ, and FNQ is usually much smaller than the total number of ket-side shell pair indices in

a compute task. MLBufAcc uses two band-shape thread-local buffer FM and FN to hold

the accumulations to FMN , FMP, FNP, FMQ, and FNQ. Once all shell quartets with the same

(MN| indices are processed, FM and FN are accumulated to the shared F using atomic

operations and reset to 0. For FPQ, MLBufAcc still uses a thread-private block buffer for it

and accumulates the block buffer to the shared F once a shell quartet. Algorithm 5 shows

the MLBufAcc algorithm. In MLBufAcc, FM and FN are of size maxDim× nb f , where

maxDim is the maximum size of any dimension of the ERI array and nb f is the total num-

ber of basis functions. Thus, the size of FM and FN are of O(nb f ) level. This is much

smaller than using private F copies of O(nb f 2) size.
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Algorithm 4 Fock matrix accumulation using thread-local buffer, for shell quartet
(MN|PQ)

1: if MN has changed since last call then
2: Initialize thread-local buffer fMN to 0
3: end if
4: if MP and NP have changed since last call then
5: Initialize thread-local buffers fMP, fNP to 0
6: end if
7: Initialize thread-local buffers fMQ, fNQ, fPQ to 0
8: for iM = 0 to dimM-1 do
9: for iN = 0 to dimN-1 do

10: for iP = 0 to dimP-1 do
11: for iQ = 0 to dimQ-1 do
12: I = ERI(iM, iN, iP, iQ)
13: Update fMN(iM, iN) with DPQ(iP, iQ), I
14: Update fMP(iM, iP) with DNQ(iN, iQ), I
15: Update fNP(iN, iP) with DMQ(iM, iQ), I
16: Update fPQ(iP, iQ) with DMN(iM, iN), I
17: Update fMQ(iM, iQ) with DNP(iN, iP), I
18: Update fNQ(iN, iQ) with DMP(iM, iP), I
19: end for
20: end for
21: end for
22: end for
23: Update FMQ, FNQ,FPQ with fMQ, fNQ, fPQ
24: if last MP and NP then
25: Update FMP, FNP with fMP, fNP
26: end if
27: if last MN then
28: Update FMN with fMN
29: end if
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Algorithm 5 Fock matrix accumulation for shell quartet (MN|PQ) using multi-level buffer
1: Initialize thread-ptivate buffer fPQ to 0
2: for iM = 0 to dimM-1 do
3: for iN = 0 to dimN-1 do
4: for iP = 0 to dimP-1 do
5: for iQ = 0 to dimQ-1 do
6: I = ERI(iM, iN, iP, iQ)
7: Update FMN(iM, iN) with DPQ(iP, iQ), I
8: Update FMP(iM, iP) with DNQ(iN, iQ), I
9: Update FNP(iN, iP) with DMQ(iM, iQ), I

10: Update FMQ(iM, iQ) with DNP(iN, iP), I
11: Update FNQ(iN, iQ) with DMP(iM, iP), I
12: Update fPQ(iP, iQ) with DMN(iM, iN), I
13: end for
14: end for
15: end for
16: end for
17: Update FPQ with fPQ using atomic operations
18: if this PQ is the last pair in ket-side shell pairs then
19: Update F with FM and FN using atomic operations
20: Reset FM and FN to 0
21: end if

4.2 Increasing Memory Access Locality in Fock Matrix Accumulation

The Fock matrix accumulation procedure needs to access six small blocks in the Fock

matrix and the density matrix. In modern processors, data is transferred between memory

and cache in blocks of fixed size called “cache line”. The typical cache line size for CPU

is 64 bytes. Assuming the data type of matrix element is double, fetching a row of a 3-

by-3 block (24 bytes) from memory requires transferring one or two cache lines (64 or

128 bytes) to the cache. Figure 4.1 shows a possible situation of memory transfer when

accessing this 3-by-3 block. We can see that the memory locality of accessing these small

blocks from a large matrix is very poor.

To increase the memory locality of accessing the Fock and density matrix, we use a

block storage scheme for the Fock matrix and density matrix. Both the Fock matrix and

density matrix can be decomposed into non-overlapping blocks and the position of each

27



Black boundary: 64B cache line (8 double word)

Blue block: a 3 × 3 submatrix, need 4 cache lines

Figure 4.1: Possible memory transfer when accessing a 3-by-3 block from a large matrix.

block can be calculated from the shell pair indices associated with this block. Therefore,

the Fock matrix and density matrix can be packed such that the elements of each block is

stored consecutively and the block for shell pair (M,N +1) is stored next to the block for

shell pair (M,N). Density matrix is packed before each Fock matrix construction, and the

Fock matrix is unpacked at the end of Fock matrix construction.

4.3 Reduce Vectorization Overhead in Fock Matrix Accumulation

After reducing the usage of atomic operations, the performance of Fock matrix accumula-

tion is still bounded by two factors: (1) the flop-per-byte ratio of Fock matrix accumulation

is low, and (2) dimQ is usually veary small (basis sets usually have more low AM shells

than high AM shells), which leads to a significant vectorization overhead in Fock matrix

accumulation. If the maximun AM of the shells in a given problem is 4, dimQ = 1 and

dimQ = 3 are more common that dimQ ∈ [6,10,15]. To reduce the vectorization overhead

in Fock matrix accumulation, we create five specialized kernels of Fock matrix accumu-

lation for specific value of dimQ, and call the general kernel when dimQ ≥ 21. In these

specialized kernels, we require the compiler to unroll the iQ loop to avoid vectorization

overhead. In the general kernel, we require the compiler to vectorize the iQ loop.
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CHAPTER 5

PORTABLE PGAS FRAMEWORK FOR DISTRIBUTED-MEMORY FOCK

MATRIX BUILD

For distributed-memory Fock matrix construction, a partitioned global address space (PGAS)

framework is usually used to handle inter-process data exchange and dynamic task schedul-

ing. The intrinsic structure of molecules and the shell quartet screening make the data ac-

cess patterns in Fock matrix construction highly irregular. Using a PGAS framework, a

program can index and locate the data it needs in a straightforward way, which lowers the

difficulty of development and improves maintainability.

Previously, GTFock used the Global Arrays [7] (GA) library as the PGAS framework.

GA uses ARMCI [48] and ComEx [49] as its underlying communication infrastructure and

provides operations of different abstraction levels:

1. Primitive communication operations including get, put, and accumulate,

2. Basic matrix operations including transposing, scaling and symmetrizing a matrix,

3. High-level operations including matrix-matrix multiplication and eigendecomposi-

tion.

GA is used in applications in many subject areas, including computational fluid dynamics

(NWGrid [50] and STOMP [51]), bioinformatics (ScalaBLAST [52]), and quantum chem-

istry (NWChem [17], GAMESS [33] and Molpro [53]).

Considering that GTFock only uses a small subset of operations provided in GA, we

built a lightweight PGAS library called “GTMatrix” as a new option for GTFock. GTMa-

trix provides only fundamental functionality: tiled storage and access of a global matrix,

distributed task counter, matrix-matrix multiplication, and symmetrizing a matrix. GTMa-

trix is written in C and only uses MPI functions for communication. GTMatrix does not

29



P1 P2

P3 P4

P5 P6

Figure 5.1: GTMatrix created in Listing 1

use third-party library and does not have hardware-specified optimization. Therefore, GT-

Matrix is lightweight and portable. It is designed for programs that need relatively simple

functionality and provides a platform to study communication performance. For a full set

of features, Global Arrays or UPC++ [54] are available.

5.1 C Interface of GTMatrix

GTMatrix provides a C interface with a syntax that is similar to the syntax of Global Arrays.

Listing 5.1 shows the usage of GTMatrix. In Listing 5.1, lines 3 - 11 create a 10×10 global

matrix bm with double data type. bm is a GTMatrix handle. The global matrix is partitioned

into 3× 2 blocks and all MPI processes in the MPI communicator bm store one block as

Figure 5.1 shows. Users can control the row and column displacements of each block using

r displs and c displs arrays.

GTMatrix provides two modes for accessing a block of a global matrix: the single

blocking access mode and the batched nonblocking access mode. The parameters are the

same for both modes. When a single blocking access function returns, the access is com-

pleted. When a batched nonblocking access function returns, the access request is stored

and will be executed when a batch executing function is called. In Listing 5.1, line 23 uses

the single blocking access mode to fetch a block (rs0 : rs0+ rn0− 1,cs0 : cs0+ cn0− 1)
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Listing 5.1: Example Code of Using GTMatrix
1 / / Cr ea t e a 10 * 10 m a t r i x w i t h do ub l e d a t a t y p e ,
2 / / d i s t r i b u t e d on a 3 row * 2 column p r o c e s s g r i d
3 GTMatrix_t gtm;
4 int nrow = 10, ncol = 10;
5 int n_rowblk = 3, n_colblk = 2;
6 int r_displs[4] = {0, 3, 6, 10};
7 int c_displs[3] = {0, 5, 10};
8 GTM_createGTMatrix(
9 &gtm, mpi_comm, MPI_DOUBLE, sizeof(double),

10 nrow, ncol, n_rowblk, n_colblk, &r_displs[0], &c_displs[0]
11 );
12
13 / / Loca l m a t r i x b l o c k i s s t o r e d i n gtm−>m a t b l o c k i n row−major
14 / / s t y l e w i t h l e a d i n g d i m e n s i o n gtm−> l d l o c a l . I n i t i a l i z e t h e
15 / / l o c a l m a t r i x b l o c k a c c o r d i n g t o your a l g o r i t h m .
16
17 / / S y n c h r o n i z e a l l MPI p r o c e s s e s o f a GTMatrix t o make s u r e
18 / / a l l MPI p r o c e s s e s c o m p l e t e l y i n i t i a l i z e t h e i r l o c a l b l o c k
19 GTM_Sync(gtm);
20
21 / / Fe tch a b l o c k [ r s 0 : r s 0+rn0−1, cs0 : cs0+cn0−1] from g l o b a l m a t r i x t o
22 / / l o c a l row−major b u f f e r bu f0 w i t h l e a d i n g d i m e n s i o n l d 0
23 GTM_getBlock(gtm, rs0, rn0, cs0, cn0, buf0, ld0);
24 / / S y n c h r o n i z e a l l MPI p r o c e s s e s o f a GTMatrix t o make s u r e
25 / / a l l MPI p r o c e s s e s g e t t h e i n i t i a l da ta o f t h e g l o b a l m a t r i x
26 GTM_Sync(gtm);
27
28 / / ========== Loca l Computa t ion ==========
29
30 / / Accumula te m u l t i p l e l o c a l b l o c k s t o g l o b a l m a t r i x
31 GTM_startBatchUpdate(gtm);
32 for (int i = 0; i < num_acc_blk; i++)
33 GTM_addAccBlockRequest(gtm, rs[i], rn[i], cs[i], cn[i], buf[i], ld[i]);
34 GTM_execBatchUpdate(gtm);
35 GTM_stopBatchUpdate(gtm);
36
37 / / ========== Save r e s u l t s ==========
38
39 / / D e s t r o y t h e GTMatrix s t r u c t u r e and e x i t
40 GTM_destroyGTMatrix(gtm);
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(MATLAB colon notation is used here). When GTM getBlock returns, the data is fetched

and stored in a local row-major matrix buf, and ld is the leading dimension of buf. Line 19

is used to synchronize the MPI processes in a GTMatrix to make sure each MPI process

has initialized its local matrix block before any MPI process can reach line 23. Line 26 is

used to prevent some MPI processes from updating the global matrix in lines 31 - 35 before

other MPI processes’ fetching the initial global matrix in line 23. After local computation,

lines 31 - 35 use the batched access to accumulate multiple local blocks to the global ma-

trix. GTM startBatchUpdate declares that this MPI process is starting a batch nonblocking

update and cannot use GTM addGetBlockRequest before GTM stopBatchUpdate is called.

The accumulations in lines 32 - 33 are not completed until GTM execBatchUpdate returns.

List 5.2 lists the C interface of GTMatrix and the functionality of each function.

5.2 Design of GTMatrix

GTMatrix uses MPI one-sided communication functions and passive target synchroniza-

tion for communication. For one-sided read, write, and update operations, GTMatrix uses

MPI Get, MPI Put, and MPI Accumulate, respectively. GTMatrix uses passive target syn-

chronization instead of active target synchronization for two reasons: (1) the accesses are

truly one-sided: access operations are totally handled by the source process (the process

that posts the one-sided access), and (2) it allows an MPI application to have “the widest

portability and performance” [55].

GTMatrix uses MPI derived data types (DDTs) to obtain better performance in access-

ing matrix blocks. MPI DDTs are used to tell the MPI library how to pack data from or

unpack data to one or more basic data types. Using MPI DDTs allows the MPI library

to handle the data packing automatically and avoid unnecessary data copying on some

hardware [56]. GTMatrix uses MPI DDTs in two ways. For small matrix block access,

GTMatrix predefines a set of MPI DDTs to reduce the overhead of creating and releasing

MPI DDTs. For large matrix block access, a new MPI DDT is defined and used just-in-time
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Listing 5.2: C interface of GTMatrix
1 / / ========== C o n s t r u c t o r and d e s t r u c t o r ==========
2 / / Cr ea t e and i n i t i a l i z e a GTMatrix s t r u c t u r e
3 void GTM_createGTMatrix(
4 GTMatrix_t *gt_mat, MPI_Comm comm, MPI_Datatype datatype,
5 int unit_size, int nrows, int ncols, int r_blocks, int c_blocks,
6 int *r_displs, int *c_displs
7 );
8 / / D e s t r o y a GTMatrix s t r u c t u r e
9 void GTM_destroyGTMatrix(GTMatrix_t gt_mat);

10
11 / / Data a c c e s s f u n c t i o n s i n GTMatrix has t h e same parame ter s ,
12 / / we d e f i n e i t as a marco here f o r c o n v e n i e n c e .
13 #define GTM_PARAM \
14 GTMatrix_t gt_mat, int row_start, int row_num, \
15 int col_start, int col_num, void *src_buf, int src_buf_ld
16
17 / / ========== F e t c h i n g m a t r i x b l o c k ==========
18 / / Get a b l o c k
19 void GTM_getBlock(GTM_PARAM);
20 / / Add a r e q u e s t t o g e t a b l o c k
21 void GTM_addGetBlockRequest(GTM_PARAM);
22 / / S t a r t a b a t c h g e t epoch and a l l o w t o s u b m i t u pda t e r e q u e s t s
23 void GTM_startBatchGet(GTMatrix_t gt_mat);
24 / / E x e c u t e a l l g e t r e q u e s t s i n t h e queues
25 void GTM_execBatchGet(GTMatrix_t gt_mat);
26 / / S top a b a t c h g e t epoch
27 void GTM_stopBatchGet(GTMatrix_t gt_mat);
28
29 / / ========== Updat ing m a t r i x b l o c k ==========
30 / / Put a b l o c k
31 void GTM_putBlock(GTM_PARAM);
32 / / Add a r e q u e s t t o p u t a b l o c k
33 void GTM_addPutBlockRequest(GTM_PARAM);
34 / / Accumula te a b l o c k
35 void GTM_accumulateBlock(GTM_PARAM);
36 / / Add a r e q u e s t t o a c c u m u l a t e a b l o c k
37 void GTM_addAccumulateBlockRequest(GTM_PARAM);
38 / / S t a r t a b a t c h up da t e epoch and a l l o w t o s u b m i t u pda t e r e q u e s t s
39 void GTM_startBatchUpdate(GTMatrix_t gt_mat);
40 / / E x e c u t e a l l up da t e r e q u e s t s i n t h e queues
41 void GTM_execBatchUpdate(GTMatrix_t gt_mat);
42 / / S top a b a t c h up da t e epoch
43 void GTM_stopBatchUpdate(GTMatrix_t gt_mat);
44
45 / / ========== Helper f u n c t i o n s ==========
46 / / S y m m e t r i z e a mat r i x , i . e . ( A+A ˆ T ) / 2 ,
47 / / now s u p p o r t s i n t and do ub l e da ta t y p e
48 void GTM_symmetrizeGTMatrix(GTMatrix_t gt_mat);
49 / / S y n c h r o n i z e a l l p r o c e s s e s
50 void GTM_Sync(GTMatrix_t gt_mat);
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and released after posting the access operation.

GTMatrix uses MPI shared memory to accelerate intra-node MPI process communica-

tion. When creating a global matrix, GTMatrix creates a shared memory MPI window and

a global MPI window. For read operations, if target processes (the processes that the target

data located in) are in the same node as the source process, GTMatrix uses direct memory

copy in the shared memory MPI window instead of MPI Get. For write and update opera-

tions, GTMatrix always uses MPI Put and MPI Accumulate in the global MPI window to

guarantee the atomicity of these operations.

The batched access mode in GTMatrix is designed to accelerate: (1) large numbers of

accesses to the same process, and (2) many-to-many communications. When a program

submits an access request to GTMatrix in batched access mode, the access request is de-

composed into multiple single-target access requests such that each of these new requests

has only one target process. Then, each single-target access request is pushed to its target

process’s queue. Access requests are posted and completed when the program calls GT-

Matrix to perform the batched access. The source MPI process only need to synchronize

with each target process once for finishing all access requests instead of synchronizing for

each access request. A ring algorithm is used to accelerate many-to-many communications

using GTMatrix. A source process Ps completes its access requests to target process Pt in

this order: t = s,s+1, . . . , p−1, p,1,2, . . . ,s−2,s−1.

The distributed task counter in GTMatrix uses MPI Fetch and op to perform read-and-

increment operations on remote processes and atomic fetch-and-add operations for fast

local counter access and update. We encapsulate these low-level MPI and atomic operations

into a distributed task counter for easier usage. The dynamic task scheduler in GTFock uses

this functionality to perform task stealing.
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5.3 Using GTMatrix Efficiently

Using GTMatrix in GTFock and other MPI applications is easy. Nevertheless, users should

choose an access mode carefully to maximize the communication performance of a com-

munication procedure in the application. In a communication procedure:

• If some processes need to access one or several large blocks of the global matrix, we

suggest using the batched access mode in this procedure to utilize the ring algorithm

for large-volume many-to-many communications.

• If all processes need to access one or several moderate or small blocks of the global

matrix, we suggest using the single blocking access mode which has a smaller pro-

cess overhead compared to the batched access mode in this case.

• If some processes need to access many(≥ 5) blocks of the global matrix, the batched

access mode should be used to reduce the synchronization cost of these accesses as

well as utilize the ring algorithm for many-to-many communications.

As an example, now we anaylze three major communication procedures in GTFock and

choose the GTMatrix access modes for each of them:

• GatherD: each process gets a large block of the density matrix that will used in Fock

matrix construction. We use batched access mode for this procedure.

• AccFBuf: each process accumulates its private Fock matrix buffer to its public Fock

matrix buffer or another process’s Fock matrix buffer after constrcuting its private

Fock buffer with ERI results in an ERI computation task. Since each process only

need to update data on one process at a time, we use single blocking access mode for

this procedure.

• ScatterF: each process accumulates its public Fock matrix buffer to corresponding

blocks of the Fock matrix. Since each process needs to update a large number of

varying-size blocks, we use the batched access mode for this procedure.
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CHAPTER 6

ACCELERATING DENSITY MATRIX PURIFICATION VIA OVERLAPPING

COMMUNICATION WITH COMMUNICATIONS

In density matrix purification, the computation kernel is calculating the square and cube

of a symmetric matrix Dk in parallel. We call this kernel “SymmSquareCube” for short.

GTFock uses the 3D matrix multiplication algorithm, which is proved to be communication

optimal [37] when having enough memory, for SymmSquareCube. Nevertheless, network

communication is still the bottleneck of the 3D matrix multiplication algorithm. Thus,

we explore the idea of overlapping communications with communications to better utilize

network bandwidth and accelerate communication operations in SymmSquareCube.

6.1 Techniques for Overlapping Communications

6.1.1 Using Nonblocking MPI Operations to Pipeline and Overlap Communications

In the new “nonblocking overlap” technique for overlapping communication operations,

data to be communicated is divided into multiple parts and communicated using separate

MPI communicators, i.e., each MPI process uses multiple MPI communicators, with each

communicator performing communication simultaneously with other communicators. The

communications can also be pipelined, as we will show in our first example below and in

our dense matrix computation.

The rationale for nonblocking overlap is to keep communication units busy and to try

to fully utilize the available network bandwidth by overlapping network data transfer in

one communication operation with processing stages that have little network data transfer

in other communication operations.

We explain how this new technique works with the following example. Consider the
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Figure 6.1: Communication operations in Algorithm 6 for a 4× 4 process mesh. Colors
denote different blocks of the vector y.

parallel matrix-vector multiplication y = Ax, where A is a N×N matrix and x and y are

vectors. Matrix A is partitioned and distributed onto a p× p process mesh, vector x is

partitioned into p blocks and processes P:,i have the i-th block of x (Matlab colon notation is

used to specify mesh slices). After performing local matrix-vector multiplication, we need

to reduce the local results to form the global result and then distribute y in the same way

as x. Let row comm denote a row communicator for processes Pi,: and let col comm denote

a column communicator for processes P:,i. Algorithm 6 is the algorithm for the parallel

matrix-vector multiplication. Figure 6.1 illustrates the communications in the algorithm

for a 4×4 process mesh.

Algorithm 6 Parallel matrix-vector multiplication
Input: A, x, row comm and col comm for all i
Output: y distributed as x

1: Pi, j performs local matrix-vector multiplication: y( j)
i = Ai jx j for all i, j

2: Pi,: reduce sum y( j)
i to yi on Pi,i with row comm for all i

3: Pi,i broadcast yi to P:,i with col comm for all i

In Algorithm 6, the communicated data in lines 2-3 can be divided and the operations
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Algorithm 7 Parallel matrix-vector multiplication with pipelined and overlapped commu-
nications
Input: A, x and NDUP copies of both row comm and col comm for all i
Output: y distributed as x

1: Pi, j performs local matrix-vector multiplication: y( j)
i = Ai jx j for all i, j

2: Divide y( j)
i into NDUP equal-size contiguous parts

3: for c = 1 to NDUP do
4: Pi,: posts the reduce sum of c-th part of yi on Pi,i with c-th row comm using

MPI Ireduce for all i
5: end for
6: for c = 1 to NDUP do
7: Pi,i waits for completing the reduction of c-th part of yi in line 4 using MPI Wait for

all i
8: Pi,i posts the broadcasts of c-th part of yi to P:,i with k-th col comm using MPI Ibcast

for all i
9: Pi, j posts the receive of c-th part of yi broadcasted by Pj, j with c-th col comm using

MPI Ibcast for all i 6= j
10: end for
11: Wait for all outstanding MPI Ibcast in lines 8 and 9 to finish

can be pipelined: Pi,i can start broadcasting a segment of reduced yi while still waiting

for the reduction of the rest of yi to be completed. Therefore, line 2 can be split and

overlapped with line 3. Given NDUP copies of row comm and col comm, overlapping

the communications in lines 2 and 3 of Algorithm 6 with nonblocking operations gives

Algorithm 7. Figure 6.2 shows the communications in Algorithm 7 for a 4× 4 process

mesh and NDUP = 2.

In Algorithm 7, line 4 posts nonblocking reductions for segments of yi. Processes Pi,i

wait at line 7 for the completion of these reductions. Upon each completion, a segment of

yi is broadcast (lines 8-9) within the column communicator. Finally, all processes wait for

the completion of the broadcasts.

For the same parallel program, there may be several ways of using the nonblocking

overlap technique to optimize communication operations. Some principles for using this

new technique efficiently are as follows:

• A parallel program may have several communication operations that can be put ad-
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Figure 6.2: Overlapped and pipelined communication operations in Algorithm 7 for a 4×4
process mesh and NDUP = 2. Colors denote different blocks of vector y.

jacent to each other without changing the algorithm logic. One can split and overlap

a single communication operation with itself, but having more communication oper-

ations gives us more opportunities to further overlap the communications.

• Collective operations should be overlapped. Collective operations have more execu-

tion stages and higher cost compared to point-to-point operations, which means that

the potential performance gain can be larger if collective operations are overlapped.

• The data should be contiguous and the data layout should remain unchanged in the

pipelined and overlapped communication operations. The extra cost of repacking

data for the next operation may cancel out the benefit of pipelining and overlapping

communication operations.

Choosing a proper value for NDUP is also important. One can use different NDUP

values for different operations, if these operations are not overlapped with each other. The

best NDUP value could be different for different operations, and the best value should be

chosen according to the size of the communicated data. When the message size is small, the

communication time is dominated by network latency and the effective network bandwidth
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is low. With a larger message size, the time consumed by data transfer becomes a larger

portion of the communication time and the actual bandwidth is closer to the achievable

bandwidth. Let the actual bandwidth BWe be a function of message size n: BWe = fBW (n).

After applying nonblocking overlap, the message size is reduced by a factor of 1/NDUP

and NDUP operations are issued and pipelined. The actual inter-node bandwidth may not

be as high as NDUP times fBW ( n
NDUP). To further utilize the network bandwidth,

NDUP · fBW

( n
NDUP

)
≥ fBW (n)

is a necessary condition. An easier way to choose NDUP is to make sure n/NDUP is

larger than or equal to a threshold value nt , where fBW (nt) is close to the achievable network

bandwidth. For different machines, nt may have different values, and usually 16 KB≤ nt ≤

1 MB.

If n/NDUP≤ nt , using the nonblocking overlap technique is still possible and likely to

accelerate communications, since some communication operations may utilize the network

bandwidth while other communication operations are synchronizing or performing local

processing. In this situation, using a very large NDUP (such as 16) may give some speedup

over using a small or moderate value (such as 4), but using a very large value of NDUP

would heavily consume system resources and have a large overhead.

6.1.2 Using Multiple PPN to Overlap Communications

The “multiple PPN overlap” technique is simply to run an application using multiple pro-

cesses per node. The communication operations running on the separate processes are

naturally overlapped and the communication resources may be better utilized. However,

when increasing the number of processes per node, the following factors may increase and

negatively affect performance, particularly for collectives:

• synchronization cost of blocking collective operations,
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• number of steps in collective operations,

• inter-process communication and total communication volume.

Choosing the number of processes per node is a standard way to tune application per-

formance. However, altering the number of processes per node changes multiple quantities

simultaneously, largely (1) per-process quantities such as local problem size, data layout,

number of threads, and memory access patterns, and (2) per-node quantities such as num-

ber of processes accessing the network interface. What may be optimal in one case may not

be optimal for another. Thus, in order to make effective use of the multiple PPN overlap

technique, we recommend combining it with the nonblocking overlap technique. The non-

blocking overlap technique does not have the side-effects of changing the above quantities

when the number of PPN is altered. Results for tests that combine the two techniques are

shown in Section 7.5.

In application codes that are composed of different kernels, the optimal number of PPN

for each kernel may be different. This is especially true given the complex interactions

mentioned above when changing the number of PPN. The optimal number of PPN may

also be different for computations (per-process effects of PPN) and communications (per-

node effects of PPN) within one kernel. To gain finer control over the number of PPN at

different stages of an application code, and for overlapping communication operations in

the context of this thesis, we advocate a mechanism where many processes are launched per

node and utilizing just the right number of these processes for each stage of the code. In this

mechanism, in order to reduce or avoid explicit intra-node, inter-process data movement

when the number PPN changes, the shared-memory features of MPI-3 could be used.

We implemented this mechanism for the density matrix purification kernel in our quan-

tum chemistry code in order to choose the number of PPN for the purification kernel sep-

arately from the other kernels in the code. At the beginning of the purification kernel,

processes that will be inactive call MPI Ibarrier. Then these processes use MPI Test and

usleep functions to check for the wake-up signal (completion of the barrier) every 10 mil-
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liseconds. Processes that are active perform the work of the purification kernel and then call

MPI Ibarrier when they are finished, in order to release the inactive processes and move

collectively to the next kernel. Whether a process is active or inactive in a kernel depends

on the number of PPN, which in turn is chosen to optimize the performance of that kernel.

6.2 Optimizing Matrix Squaring and Cubing

We use the name “SymmSquareCube” to denote the kernel for computing the square and

cube of a symmetric matrix. Below, we describe a version of SymmSquareCube based on

3D matrix multiplication.

Four MPI communicators are used in SymmSquareCube: global comm contains all p3

MPI processes that participate in SymmSquareCube, row comm contains processes P:, j,k,

col comm contains processes Pi,:,k, and grd comm contains processes Pi, j,:. The input ma-

trix D is partitioned into p× p blocks and initially process Pi, j,1 has block Di, j. The resulting

D2 and D3 need to be partitioned and stored in the same way as D. Algorithm 8 is the orig-

inal algorithm for SymmSquareCube released in the GTFock code. Algorithm 8 is slightly

different from performing the standard 3D algorithm twice, in order to avoid unnecessary

communication when D2 and D3 are both desired. In the first matrix multiplication, D acts

as both matrix A and B in C := A×B, and the broadcast direction of B is different from that

of the standard 3D algorithm. In the second matrix multiplication, D again acts as A and

D2 acts as B, and only D2 needs to be broadcast. The three broadcasts (lines 1, 2 and 7)

and the two reductions (lines 4 and 9) are the most time consuming parts of Algorithm 8.

The symmetry of D is only used in line 2.

6.2.1 Using the Nonblocking Overlap Technique

Algorithm 8 has three communication phases: lines 1-2, lines 4-7, and lines 9-10. Com-

munications in each of these phases can be pipelined and overlapped. However, lines 5 and

6 are irregular point-to-point communications; the potential speedup of overlapping them
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Algorithm 8 Original SymmSquareCube algorithm
Input: D, row comm, col comm and grd comm
Output: D2, D3 distributed as D

1: Pi, j,1 broadcasts Di, j as Ai, j to Pi, j,: using MPI Bcast with grd comm
2: Pi, j,i broadcasts Di, j as BT

j,i to P:, j,i using MPI Bcast with row comm
3: Local matrix multiplication: Ci, j,k := Ai, j×B j,k
4: Reduce sum Ci,:,k to D2

i,k on Pi,k,k using MPI Reduce in col comm
5: Pi,k,k sends D2

i,k to Pi,k,1 using MPI Send and MPI Recv in grd comm
6: Transpose D2 blocks s.t. Pk, j,k has D2

j,k using MPI Send and MPI Recv in global comm

7: Pk, j,k broadcast D2
j,k as B j,k to P:, j,k using MPI Bcast with row comm

8: Local matrix multiplication: Ci, j,k := Ai, j×B j,k
9: Reduce sum Ci,:,k to D3

i,k on Pi,k,k using MPI Reduce in col comm
10: Pi,k,k sends D3

i,k to Pi,k,1 using MPI Send and MPI Recv in grd comm

Algorithm 9 Baseline SymmSquareCube algorithm
Input: D, row comm, col comm and grd comm
Output: D2, D3 distributed as D

1: Pi, j,1 broadcasts Di, j as Ai, j to Pi, j,: using MPI Bcast with grd comm
2: Pi, j,i broadcasts Di, j as BT

j,i to P:, j,i using MPI Bcast with row comm
3: Local matrix multiplication: Ci, j,k := Ai, j×B j,k
4: Reduce sum Ci,:,k to D2

i,k on Pi,i,k using MPI Reduce in col comm
5: Pj, j,k broadcast D2

j,k as B j,k to P:, j,k using MPI Bcast with row comm
6: Local matrix multiplication: Ci, j,k := Ai, j×B j,k
7: Reduce sum Ci,:,k to D3

i,k on Pi,k,k using MPI Reduce in col comm
8: Pi,i,k sends D2

i,k to Pi,k,1 using MPI Send and MPI Recv in global comm
9: Pi,k,k sends D3

i,k to Pi,k,1 using MPI Send and MPI Recv in grd comm
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with other operations is smaller than overlapping collective operations. Further, the trans-

pose of the blocks of D2 in line 6 can be eliminated by using a new distribution scheme

for these blocks. Therefore we first eliminate line 6 in Algorithm 8 and move line 5 to the

second to last line, which gives us Algorithm 9, the baseline algorithm.

Algorithm 9 is a better candidate for pipelining and overlapping communication: lines

1-2 are collective operations that can be pipelined and overlapped, lines 4-5 are collective

operations that can be pipelined and overlapped, and the collective operation in line 7 can

be pipelined and overlapped with two point-to-point operations in lines 8-9. Pipelining

and overlapping these operations gives us Algorithm 10, the optimized SymmSquareCube

algorithm. When NDUP= 1, the optimized algorithm is the same as the baseline algorithm.

6.2.2 Using the Multiple PPN Overlap Technique

In GTFock, the HF calculation has two major parts: Fock matrix construction and den-

sity matrix purification. The SymmSquareCube kernel is the major part of density matrix

purification. To use multiple PPN overlap, we modified GTFock to allow the user to sep-

arately choose the number of MPI processes for Fock matrix construction and for density

matrix purification, as described at the end of Section 6.1.2.
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Algorithm 10 Optimized SymmSquareCube algorithm
Input: D and NDUP copies of: row comm, col comm and grd comm
Output: D2, D3 distributed as D

1: for c = 1 to NDUP do
2: Pi, j,1 posts the broadcast of c-th part of Di, j as Ai, j to Pi, j,: using MPI Ibcast with

c-th grd comm
3: end for
4: for c = 1 to NDUP do
5: Pi, j,i receives c-th part of Di, j using MPI Ibcast in c-th grd comm
6: Pi, j,i posts the broadcast of c-th part of Di, j as BT

j,i to P:, j,i using MPI Ibcast with c-th
row comm

7: end for
8: Wait for all outstanding MPI Ibcast in lines 2 and 6 to finish
9: Local matrix multiplication: Ci, j,k := Ai, j×B j,k

10: for c = 1 to NDUP do
11: All processes post the reduction sum of c-th part of Ci,:,k to c-th part of D2

i,k on Pi,i,k
using MPI Ireduce in c-th col comm

12: end for
13: for c = 1 to NDUP do
14: Pj, j,k obtains c-th part of D2

j,k using MPI Ireduce in c-th col comm
15: Pj, j,k posts the broadcast of c-th part of D2

j,k as B j,k to P:, j,k using MPI Ibcast with
c-th row comm

16: end for
17: Wait for all outstanding MPI Ibcast in line 15 to finish
18: Local matrix multiplication: Ci, j,k := Ai, j×B j,k
19: for c = 1 to NDUP do
20: All processes post the reduction sum of c-th part of Ci,:,k to c-th part of D3

i,k on Pi,k,k
using MPI Ireduce in c-th col comm

21: end for
22: for c = 1 to NDUP do
23: Pi,i,k posts the send of c-th part of D2

i,k to Pi,k,1 using MPI Isend and MPI Irecv in
c-th global comm

24: Pi,k,k waits for the c-th part of D3
i,k to be reduced

25: Pi,k,k posts the send of c-th part of D3
i,k to Pi,k,1 using MPI Isend and MPI Irecv in

c-th grd comm
26: end for
27: Wait for all outstanding MPI Irecv in lines 23 and 25
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CHAPTER 7

PERFORMANCE TEST CALCULATIONS

To demonstrate the effect of our optimizations, we implemented all optimizations in this

thesis in the GTFock code and performed test calculations.

GTFock originally used an optimized version of the ERD integral library, called Op-

tERD [4], which has a 2× performance advantage over the original ERD library [57] de-

veloped for the ACES III quantum chemistry package [29]. ERD and OptERD use the Rys

quadrature [58] method for computing ERI. We optimized Simint and updated GTFock

to use Simint to compute ERIs in vectorized fashion. Our implementation calls Simint

one shell quartet at a time, or with batches of shell quartets using Algorithm 1. For the

Fock matrix accumulation procedure, besides the original algorithm (Algorithm 2), we

also implemented two optimized algorithms: Algorithm 4 and 5. Finally, we implemented

Algorithm 8, 9, and 10 for the SymmSquareCube kernel in density matrix purification.

For ERI calculations, the tolerance for screening of shell quartets implemented in GT-

Fock is 10−11. The tolerance for primitive integral screening is 10−14 used for Simint and

OptERD. These are commonly used values for these parameters.

We report the execution time spent in Fock matrix construction (“Fock build”), which

includes ERI calculations (“ERI calc”) and Fock matrix accumulation (“Fock accum”), and

the execution time spent in density matrix purification (“Purif”) as well as an SCF iteration

(“SCF iter”). We also report the measured floating point operation performance (in TFlops)

of the SymmSquareCube kernel to give an intuitive impression. All reported timings and

performance are averaged over the SCF iterations needed for a HF-SCF calculation.

Tests were performed using the Intel Xeon Skylake (SKX) nodes on the Stampede2

supercomputer at Texas Advanced Computing Center. Each of these nodes has two sockets

and 192 GB DDR4 memory, and each socket has an Intel Xeon Platinum 8160 processor
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with 24 cores and 2 hyperthreads per core. The interconnect system of Stampede2 is a 100

Gbps Intel Omni-Path network with a fat tree topology employing six core switches. Codes

were compiled with Intel C/C++ compiler and Intel MPI version 17.0.3 with optimization

flags “-xHost -O3”. Intel MKL version 17.0.3 was used to perform dense matrix-matrix

multiplication in the SymmSquareCube kernel.

Tests in Section 7.2 were performed on a single SKX node using 8 MPI processes and

12 OpenMP threads per process (total of 96 threads). Tests in Section 7.3, 7.4, and 7.5

(except Table 7.12 and 7.13) were performed on 64 SKX nodes used 2 MPI processes

per node and 48 OpenMP threads per process (total of 96 threads per node). Tests were

performed using basis sets with different amount of contraction:

• aug-cc-pVTZ: A lightly contracted basis set,

• cc-pVDZ: A moderately contracted basis set that has few high AM shells,

• ANO-DZ: A heavily contracted basis set.

The test molecular systems are derived from a protein-ligand complex consisting of

a human immunodeficiency virus (HIV) drug molecule bound to HIV II protease. The

atomic configuration comes from the protein data bank (code 1HSG). Small test systems,

called protein-28, consist of just the binding pocket portion of the protein. Larger test

systems, called 1hsg-60 and 1hsg-70 consist of the drug molecule and a portion of its

protein environment. See Table 7.1 for additional details of these test systems. Tests in

Sections 7.1, 7.2, and 7.3 calculate protein-28 molecular systems using a single SKX node.

Tests in Section 7.1, 7.3, 7.4, and 7.5 calculae 1hsg-60 and 1hsg-70 molecular systems

using 64 SKX nodes.

7.1 Overall Results

For overall Fock matrix construction and density matrix purification performance, we com-

pare two configurations listed in Table 7.2. We note that in the optimized version, optimiza-
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Table 7.1: Test molecular systems
Test Basis Atoms Occupied Shells Basis

System Set Orbitals Functions
protein-28 aug-cc-pVTZ 30 62 350 1230
protein-28 cc-pVDZ 30 62 138 310
protein-28 ANO-DZ 30 62 214 526
1hsg-60 cc-pVDZ 713 1279 3138 6895
1hsg-70 cc-pVDZ 791 1418 3480 7645

Table 7.2: GTFock configurations for overall performance comparison
Configuration ERI ERI Fock accum PGAS SymmSquareCube

Library Batching Algorithm Framework Algorithm
Baseline Simint No Alg. 2 GA v5.3 Alg. 8

Optimized Simint Yes Alg. 5 GTMatrix Alg. 10

tions for shared-memory Fock matrix accumulation in Section 4.2 and 4.3 are also enabled.

Table 7.3 shows the timings for one SCF iteration when different test molecular systems

are used. Overall, we observe that compared to the baseline version, the optimized version

of GTFock gives a large speedup to Fock matrix construction when using the aug-cc-pVTZ

and cc-pVDZ basis sets and gives a large speedup to the density matrix purification in 64

node test cases (1hsg-60 and 1hsg-70). In the rest of this chapter, we will breakdown the

timings and show the effect of each optimization seperately.

Table 7.3: Timings (in seconds) of Fock matrix construction (“Fock build”), density ma-
trix purification (“Purif”) and SCF iteration (“SCF iter”) using the baseline and optimized
GTFock.

Test Basis Baseline Optimized
System Set Fock build Purif SCF iter Fock build Purif SCF iter

protein-28 aug-cc-pVTZ 117.76 2.16 119.95 31.19 1.49 32.74
protein-28 cc-pVDZ 0.572 0.031 0.613 0.277 0.024 0.306
protein-28 ANO-DZ 193.11 0.178 193.29 201.93 0.136 202.07
1hsg-60 cc-pVDZ 37.21 4.04 41.67 12.20 2.58 15.33
1hsg-70 cc-pVDZ 45.89 4.82 51.23 15.28 3.87 19.70
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Table 7.4: ERI calculation timings (in seconds) for protein-28 molecular system
Scalar Vectorized Vectorized

Basis Set Simint w/o Simint w/o Simint w/
Batching Batching Batching

aug-cc-pVTZ 53.41 47.08 15.67
cc-pVDZ 0.281 0.256 0.127
ANO-DZ 693.40 180.68 186.44

7.2 Effect of ERI Vectorization Optimizations

For ERI calculation performance, four cases are of primary interest for comparison. These

are the implementations using (1) OptERD, (2) scalar Simint without batching, (3) vec-

torized Simint without batching, (4) vectorized Simint with batching. Scalar Simint is a

version of Simint compiled without vector instructions and is useful to quantify the effec-

tiveness of Simint’s vectorization. Table 7.4 shows the timing results (in second) of all four

cases. In all cases, low-level optimizations and primitive sorting are enabled in Simint.

Overall, we observe that vectorized Simint with ERI batching gives a large speedup

compared to vectorized Simint without ERI batching. A surprising result is that, without

batching, vectorized Simint is only slightly better than scalar Simint for the moderately

contracted basis set cc-pVDZ and the lightly contracted basis set aug-cc-pVTZ. This is due

to extremely short SIMD loop lengths in these two cases when batching is not used, as

will be shown below. This poor performance was not noticed in the original Simint paper

[5] which only used a microbenchmark to measure ERI calculation time in a way that is

divorced from how Simint would actually be called from a quantum chemistry code.

For highly contracted basis sets like ANO-DZ, Simint has a large speedup of approx-

imately 3.85× due to vectorization even without batching. For highly contracted basis

sets, the vast majority of the computation is spent on well-vectorized VRRs rather than the

poorly-vectorized HRRs that take place after the primitive integrals are contracted. The

overhead of gathering shell pair data for batching actually has a small negative impact on

ERI calulcation performance in this case.
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Table 7.5: Average SIMD loop length for each call to Simint, with and without batching
Basis Set w/o Batching w/ Batching Ratio

aug-cc-pVTZ 2.7 40.0 14.81
cc-pVDZ 7.4 71.5 9.66
ANO-DZ 79.3 1184.8 14.94

Table 7.6: ERI calculation timings (in seconds) with different queue lengths for the protein-
28 molecular system

Basis Set 32 24 16 12 8 4
aug-cc-pVTZ 15.25 15.58 15.67 15.80 16.25 19.70

cc-pVDZ 0.124 0.125 0.127 0.130 0.133 0.147

For the lightly and moderately contracted basis sets, aug-cc-pVTZ and cc-pVDZ, the

speedup of using vectorized Simint with batching vs. without batching is significant: 3.00

and 2.02, respectively. Therefore, batching for Simint is essential when using lightly and

moderately contracted basis sets.

To support these observed results of batching on vectorization efficiency, we compare

the average length of the SIMD loop in Simint with and without ERI batching. Table 7.5

shows that without batching, the average SIMD loop length when using aug-cc-pVTZ and

cc-pVDZ basis sets is very small, which means that the SIMD utilization is low. Very

low SIMD utilization can make vectorized Simint slower than scalar Simint, as we saw

above. When using the ANO-DZ basis set, the average SIMD loop length before batching

is already large enough to obtain high vectorization efficiency.

Table 7.6 shows ERI calculation timings with different queue lengths used in Algorithm

1 for the protein-28 molecular system. We skip the ANO-DZ basis set since already know

that ERI batching has a small impact on ERI calculation performance when using the ANO-

DZ basis set. The results justify our choice of 16 for the queue length, with longer lengths

not giving significant performance improvement at the cost of additional storage.

Table 7.7 shows the effect of Simint low-level optimizations. The percentage of prim-

itive integrals that can be neglected, and the percentage of SIMD words that can be ne-

glected, with and without primitive sorting in Simint, is showed in Table 7.7. The speedup
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Table 7.7: Effect of Simint low-level optimizations for the protein-28 molecular system
Percent Percent Neglected ERI Calc. Speedup

Basis Set Neglected SIMD Words via Low-level
Primitives w/o Sorting w/ Sorting Optimizations

aug-cc-pVTZ 36.2 19.6 25.0 1.11
cc-pVDZ 62.0 41.6 51.3 1.17
ANO-DZ 91.3 64.6 78.4 1.41

of ERI calculations from all Simint low-level optimizations is also listed in Table 7.7. In

these tests, the ERI calculation is batched.

We observe some speedup to the ERI calculation time in each case. The speedup for the

aug-cc-pVTZ basis set mainly reflects the effect of optimizing for high AM functions, since

aug-cc-pVTZ is lightly contracted but has many such high AM functions. The speedup for

the cc-pVDZ mainly reflects and the speedup for the ANO-DZ basis sets partly reflect the

effect of optimizing the contraction operation for AVX-512, given that these two basis sets

have few high AM integrals, ANO-DZ is highly contracted, and the test molecule with

cc-pVDZ has many integrals that belong to the (ss|ss) AM class. Compared to no sorting,

primitive sorting significantly reduce the number of SIMD words that need to be computed

when using the ANO-DZ basis set. Therefore, the speedup for the ANO-DZ basis set

mainly reflects the effect of primitive sorting.

7.3 Effect of Shared-memory Fock Matrix Accumulation Optimizations

Table 7.8 shows the average runtime of Fock matrix accumulation using Algorithm 2, 4,

and 5. Optimizations in Section 4.2 and 4.3 is enabled only in Algorithm 5. The runtime

for batched ERI calculation with Simint low-level optimizations is also shown for compar-

ison. We observe that the runtime of unoptimized Fock matrix accumulation (Algorithm 2)

when using aug-cc-pVTZ and cc-pVDZ basis sets is larger than the runtime of batched ERI

calculation. Therefore, reducing the runtime of Fock matrix accumulation is essential.

The optimized Fock accumulation algorithm greatly reduces the runtime of Fock matrix
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Table 7.8: Fock matrix accumulation (“Fock accum”) timings (in seconds). Batched ERI
calculation timings (in seconds) are also shown for comparison.

Test Basis Fock accum ERI
System Set Alg. 2 Alg. 4 Alg. 5 Calculation

protein-28 aug-cc-pVTZ 66.48 15.48 10.61 15.67
protein-28 cc-pVDZ 0.221 0.086 0.062 0.121
protein-28 ANO-DZ 5.29 2.20 1.51 186.44
1hsg-60 cc-pVDZ 14.62 5.90 3.78 5.48
1hsg-70 cc-pVDZ 18.61 7.60 4.82 7.46

accumulation for all tested basis sets and helps reduce Fock matrix accumulation runtime.

The speedup of Algorithm 4 to Algorithm 2 shows the effect of reducing atomic operations.

The speedup of Algorithm 5 to Algorithm 2 shows the effect of combining all optimizations

for Fock matrix accumulation. For the ANO-DZ basis set, ERI calculation dominates the

runtime of Fock build, and optimizing Fock matrix accumulation only has a small impact

on Fock matrix construction runtime.

7.4 Effect of Using GTMatrix

Table 7.9 shows the runtime of the three communication procedures listed in Section 5.3 for

Fock matrix construction using Global Arrays and GTMatrix. GTFock uses non-blocking

calls in Global Arrays. For GTMatrix, we tested both using single blocking access and

batched access. When using single blocking access in GTMatrix, its performance is com-

parable to Global Arrays. Using batched access in GTMatrix gives a large speedup to

GatherD and ScatterF compared to using single blocking access in GTMatrix and using

Global Arrays. The speedup of GatherD shows the effect of GTMatrix’s ring algorithm,

and the speedup of ScatterF mainly shows that batched access can greatly reduce the syn-

chronization cost when a process has many accesses to another process. Using GTMatrix

also gives a speedup to AccFBuf compared to using Global Arrays. A possible reason is

that GTMatrix has a smaller process overhead.
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Table 7.9: Communication procedures timing (in seconds) in Fock matrix construction
using non-blocking Global Arrays operations and different access modes in GTMatrix.
See Section 5.3 for explanation of communication procedure names.

Test Comm. Global GTMatrix
System Procedure Arrays Blocking Batched
1hsg-60 GatherD 0.473 0.478 0.330

AccFBuf 0.183 0.133 0.134
ScatterF 0.496 0.546 0.332

Total 1.152 1.157 0.796
1hsg-70 GatherD 0.613 0.743 0.422

AccFBuf 0.237 0.166 0.162
ScatterF 0.603 0.655 0.405

Total 1.453 1.564 0.989

Table 7.10: Performance of SymmSquareCube algorithms and speedup of the ovlpcomm
algorithm (Alg. 10) over the baseline algorithm (Alg. 9)

Test Matrix Performance (TFlops) Alg. 10 over
System Dimension Alg. 8 Alg. 9 Alg. 10 Alg. 9
1hsg-60 6895 16.83 17.57 20.57 1.17
1hsg-70 7645 18.49 19.21 22.48 1.17

7.5 Effect of Overlapping Communication with Communications

We now compare the performance of Algorithm 8 (“original”), 9 (“baseline”), and 10

(“ovlpcomm”) for the SymmSquareCube kernel. Table 7.10 shows the performance of

these algorithms and the speedup of the ovlpcomm algorithm over the baseline algorithm.

Overall, we observe that the baseline algorithm (Alg. 9) gives some speedup over the orig-

inal algorithm (Alg. 8). Pipelining and overlapping communication operations with other

communication operations in the ovlpcomm algorithm (Alg. 10) give 17% or more per-

formance improvement over the baseline algorithm. As the baseline algorithm is already

substantially optimized [4], the observed speedups are very significant.

Table 7.11 shows the performance of the ovlpcomm SymmSquareCube algorithm for

different values of NDUP. The results justify our choice of using NDUP = 4. Larger

NDUP values can give further performance improvement, but the performance is close to

that for NDUP = 4.
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Table 7.11: Performance of ovlpcomm SymmSquareCube algorithm for different values of
NDUP. NDUP = 1 is the same as the baseline SymmSquareCube algorithm.

Test Performance (TFlops) as function of NDUP
System 1 2 3 4 5 6
1hsg-60 17.57 19.82 19.43 20.57 21.21 20.68
1hsg-70 19.21 21.51 21.47 22.48 22.39 22.54

Table 7.12 shows the performance of the ovlpcomm SymmSquareCube algorithm with

NDUP = 1 and NDUP = 4 using different numbers of MPI processes per node (PPN) for

the 1hsg-70 molecular system. The case NDUP = 1 corresponds to the baseline algorithm

without the nonblocking overlap technique, and thus shows the effect of the multiple PPN

overlap technique by itself.

The number of MPI processes per node, PPN, is chosen such that 64× (PPN− 1) <

p3 ≤ 64×PPN, where p3 is the number of processes. The column “total nodes” is the

actual number of nodes utilized, dp3/PPNe. We use a “natural” assignment of the MPI

ranks to the p× p× p process mesh, i.e., the ranks are assigned row by row in one plane

and then plane by plane. Also, the MPI ranks on a node are numbered consecutively.

We observe that using multiple MPI processes per node gives considerable speedup to

the SymmSquareCube algorithm with either NDUP = 1 or NDUP = 4 compared to using

a single MPI process per node. When running multiple MPI processes per node, using

NDUP = 4 is always faster than using NDUP = 1. It is surprising that, for the ovlpcomm

SymmSquareCube algorithm, using NDUP = 4 with only 2 MPI processes per node is

almost always faster than using NDUP = 1 with any number of MPI processes per node.

This shows that combining the two techniques, nonblocking overlap and multiple PPN

overlap, is a better choice than using only one of the techniques. The best performance of

SymmSquareCube, combining the two overlapping techniques (7× 7× 7 processes with

NDUP = 4), is 91.2% faster than the baseline performance without use of communication

overlap.

However, using a large number of PPN may not give the best overall performance.
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Table 7.12: Performance of the ovlpcomm SymmSquareCube algorithm with NDUP = 1
and 4 for different numbers of PPN. Test molecular system is 1hsg-70.

Process Configuration SymmSquareCube Performance (TFlops)
PPN Process Mesh Total Nodes NDUP = 1 NDUP = 4

1 4×4×4 64 19.21 22.48
2 5×5×5 63 20.61 26.45
4 6×6×6 54 26.24 33.87
6 7×7×7 58 27.53 36.73
8 8×8×8 64 24.98 32.38

Table 7.13: Timings (in seconds) of Fock matrix construction (“Fock build”), density ma-
trix purification (“Purif”) and SCF iteration (“SCF iter”) using NDUP = 4 for different
numbers of PPN. Test molecular system is 1hsg-70.

PPN Fock build Purif SCF iter
1 17.26 3.52 21.25
2 15.13 3.23 18.60
4 17.26 2.53 20.09
6 18.54 2.52 21.33
8 19.51 2.86 22.67

Table 7.13 shows the runtime of Fock matrix construction, density matrix purification, and

SCF iteration using different numbers of MPI PPN for the 1hsg-70 molecular system and

NDUP= 4. We can see that using PPN=6 does not give the best SCF performance. Instead,

using PPN=2 and a 5×5×5 process mesh gives the best SCF performance.
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CHAPTER 8

CONCLUSION

In this thesis, we have described and demonstrated several performance optimizations for

computational kernels in quantum chemistry calculations. Chapter 3 introduced optimiza-

tions to accelerate ERI calculations utilizing a processor’s vector processing units: low-

level optimizations for the Simint library and an ERI batching scheme for Fock matrix

construction. Chapter 4 discussed the steps to reduce the cost of thread-safe parallel Fock

matrix accumlation on shared-memory platforms and other techniques to improve the per-

formance of Fock matrix accumulation. Chapter 5 presented the design of GTMatrix, a

new portable PGAS framework, and the usage of this library. Chapter 6 explored a new

idea of overlapping communications with communications, which may better utilize net-

work bandwidth and speed up communication intensive kernels like the matrix squaring

and cubing kernel in density matrix purification. Test calculations in Chapter 7 show

that the optimizations in this thesis give favourable speedups to the optimized kernels,

which justifies the optimizations in this thesis. GTFock is released in open-source form at

https://github.com/gtfock-chem.
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