H2Pack: High-performance H? Matrix Package for Kernel
Matrices Using the Proxy Point Method

HUA HUANG, XIN XING, and EDMOND CHOW, School of Computational Science and

Engineering, Georgia Institute of Technology

Dense kernel matrices represented in 2 matrix format typically require less storage and have faster matrix-
vector multiplications than when these matrices are represented in the standard dense format. In this article,
we present H2Pack, a high-performance, shared-memory library for constructing and operating with 42 ma-
trix representations for kernel matrices defined by non-oscillatory, translationally invariant kernel functions.
Using a hybrid analytic-algebraic compression method called the proxy point method, H2Pack can efficiently
construct an ? matrix representation with linear computational complexity. Storage and matrix-vector mul-
tiplication also have linear complexity. H2Pack also introduces the concept of “partially admissible blocks”
for H? matrices to make 9? matrix-vector multiplication mathematically identical to the fast multipole
method (FMM) if analytic expansions are used. We optimize H2Pack from both the algorithm and software
perspectives. Compared to existing FMM libraries, H2Pack generally has much faster {2 matrix-vector mul-
tiplications, since the proxy point method is more effective at producing block low-rank approximations than
the analytic methods used in FMM. As a tradeoff, {2 matrix construction in H2Pack is typically more expen-
sive than the setup cost in FMM libraries. Thus, H2Pack is ideal for applications that need a large number of
matrix-vector multiplications for a given configuration of data points.

CCS Concepts: « Mathematics of computing — Mathematical software;

Additional Key Words and Phrases: Rank-structured matrix, 9% matrix, proxy point method, N-body prob-
lem, fast multipole method, high-performance computing

ACM Reference format:

Hua Huang, Xin Xing, and Edmond Chow. 2020. H2Pack: High-performance 4% Matrix Package for Kernel
Matrices Using the Proxy Point Method. ACM Trans. Math. Softw. 47, 1, Article 3 (December 2020), 29 pages.
https://doi.org/10.1145/3412850

1 INTRODUCTION

Many problems in scientific computing and data analytics, such as particle simulations with long-
range interactions, the numerical solution of integral equations, and Gaussian process modeling,
lead to dense kernel matrices. Given two sets of points, X and Y, and a non-compact kernel func-
tion K(x,y), the kernel matrix K(X,Y) has entries defined as K(x;, y;) with all (x;,y;) € X X Y.
Usually, kernel matrices have block low-rank structure, i.e., certain blocks of the matrices are

Funding from the National Science Foundation grant ACI-1609842 is gratefully acknowledged.

Authors’ address: H. Huang, X. Xing, and E. Chow, School of Computational Science and Engineering, Georgia Insti-
tute of Technology, 756 West Peachtree Street NW, Atlanta GA 30332, USA; emails: {huangh223, xxing33}@gatech.edu,
echow@cc.gatech.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

0098-3500/2020/12-ART3 $15.00

https://doi.org/10.1145/3412850

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 3. Publication date: December 2020.

https://doi.org/10.1145/3412850
mailto:permissions@acm.org
https://doi.org/10.1145/3412850

3:2 H. Huang et al.

numerically low-rank. For such a kernel matrix, representing these blocks in low-rank form gives
a rank-structured matrix representation that asymptotically reduces the quadratic cost of matrix
storage and matrix-vector multiplication. Different kernel matrices can be effectively stored in
different rank-structured matrix representations such as H [18, 20], H? [19, 21], and HSS [8]. In
this article, we focus on the development of a library for efficiently constructing and using H*
matrix representations defined by non-oscillatory, translationally invariant kernel functions with
points in low-dimensional space (e.g., two dimensional (2D) or 3D).

9H? matrix representations are constructed by compressing specific matrix blocks into low-rank
form via a nested approach. The compression of these blocks can be computed either analytically
based on degenerate approximations of the kernel function such as multipole expansions and poly-
nomial expansions, or algebraically based on matrix decomposition methods such as such as SVD,
QR, and ACA [2]. It is worth noting that, when analytic compression methods are used, the fast
matrix-vector multiplication of the constructed 9{? matrix can be viewed as an algebraic variant
of the fast multipole method (FMM) [11, 15, 16, 32]. Compared to algebraic compression, analytic
compression usually requires less intermediate storage and computation but is limited to specific
kernel functions and can give approximation rank much larger than the numerical rank of the
matrix block to be compressed. Algebraic compression, instead, is usually more effective in terms
of range of applicability and optimality of the approximation rank. Due to these differences, the
matrix-vector multiplication with an 2 matrix constructed by algebraic methods is usually faster
than FMM, since a lower-rank approximation leads to more cost reduction in the multiplication. As
a sacrifice, algebraic methods usually lead to much more expensive 9{* matrix construction than
analytic methods. For example, simply evaluating all matrix entries has quadratic cost, making
many algebraic methods such as SVD unfavorable.

To balance between analytic methods and algebraic methods, we use a hybrid analytic-algebraic
compression method called the proxy point method [31] to construct H? matrix representations.
For kernel functions from potential theory, such as the Laplace and Stokes kernels, Martinsson and
Rokhlin [24] introduced the proxy surface method to efficiently compress specific kernel blocks into
a low-rank form called interpolative decomposition (ID) [17]. Two variants of the proxy surface
method were proposed later by Corona [10] and Minden [26]. All three methods belong to the
class of the proxy point methods that has been formalized and studied in recent work [31]. Com-
pared to algebraic methods, the proxy point method avoids forming a kernel block explicitly before
compressing it and also requires far less data communication in parallel {? matrix construction.
Compared to analytic methods, the proxy point method can obtain better approximation ranks and
is kernel independent. As a result, it can efficiently construct an ? matrix representation with
linear complexity, while the constructed 9{? matrix can have faster matrix-vector multiplications
than FMM. Another common hybrid analytic-algebraic approach is to combine an analytic method
with algebraic recompression [1, 4, 6]. Such an approach gives better approximation rank but is
also restricted to certain kernels, like analytic methods. In comparison, the proxy point method
incorporates the kernel function numerically when constructing the H? matrix representation.
This allows the construction to be kernel-independent.

H2Pack is a shared-memory parallel library for kernel matrices based on constructing 92 matrix
representations using the proxy point method. The kernel functions must be non-oscillatory and
translationally invariant (i.e., K(x, y) = k(x — y) with a univariate function k(-)) with points in low-
dimensional space. H2Pack library works for both scalar and tensor kernel functions. Presently,
the library further requires the input kernel function to be symmetric, i.e., K(x,y) = K(y, x), and
the kernel matrix to be defined by one set of points X, i.e., K(X, X). These two requirements can
be easily lifted via a simple extension of H2Pack, which will be addressed in the next version.

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 3. Publication date: December 2020.

H2Pack: High-performance H? Matrix Package 3:3

More precisely, H2Pack implements the following two components:

e H? matrix construction based on the proxy point method with inputs being a ker-
nel function K(x,y), a set of points X, and an error threshold for the low-rank
approximations;

e JH? matrix-vector multiplication.

We optimize H2Pack from both the algorithm and software perspectives. Different parallelization
and load-balancing strategies are applied for different computation phases in H2Pack. Moreover,
two running modes for H2Pack are available to adapt to different computing platforms and differ-
ent problem settings for better performance. The ahead-of-time mode precomputes and stores all
the components of an ? matrix. The just-in-time mode calculates a large portion of the compo-
nents dynamically when needed in H? matrix-vector multiplication. These two modes provide a
tradeoff between storage and computation. The performance difference between the two modes
depends on the memory bandwidth, CPU speed, and the complexity of the kernel function evalua-
tions. It is worth noting that this two-mode approach has been proposed before in Refs [6, 25]. Last,
we also exploit intrinsic functions for better vectorization to further improve the performance of
H2Pack on multi-core and many-core processors.

Our numerical tests with H2Pack show that its /% matrix construction cost is only around
5 to 15 times the corresponding {? matrix-vector multiplication cost. Comparisons of H2Pack
with two state-of-the-art FMM libraries, PVFMM [23] and FMM3D [13], show that H2Pack has
asymptotically more expensive H? matrix construction but faster 4% matrix-vector multiplica-
tions. More precisely, the H? matrix construction cost in H2Pack is similar to the FMM setup
costs in FMM3D and PVFMM for a low or moderate relative multiplication accuracy, e.g., 107
and 1078, and is just 2 to 5 times more expensive for a high relative multiplication accuracy,
e.g., 10711, Meanwhile, the approximation ranks of blocks in H2Pack are 2 to 10 times smaller
than those in PVFMM and FMM3D. As a result, the H? matrix-vector multiplication in H2Pack
is 1.5 to 5 times faster than in PVFMM and 5 to 25 times faster than in FMM3D in various
tests. In practice, H2Pack is ideal for problems where many matrix-vector multiplications are
required per configuration of data points, e.g., numerical solution of integral equations and
Gaussian process modeling, so that the relatively expensive H? matrix construction cost can be
amortized.

Related work. There are several libraries for FMM and its variants. FMM3D [13] implements the
classical FMM [14, 16] for three key kernel functions in 3D from potential theory, the Laplace,
Helmbholtz, and Stokes kernels. PVFMM [23] implements the kernel-independent FMM [32] and
works for kernel functions from potential theory. BBEMM3D [29] implements the black-box
FMM [11] and works for smooth, translationally invariant kernel functions. All these FMM li-
braries support OpenMP shared memory parallelization. PVFMM further supports MPI distributed
memory parallelization and GPU acceleration of major FMM subroutines.

There are also several libraries for working with rank-structured matrices. H2Lib [3] constructs
9H? matrix representations algebraically but only works for matrices from the boundary element
method whose entries are kernel-defined interactions between compact basis functions in integral
form. H2Lib supports OpenMP shared memory parallelization. SMASH [6] uses a heuristic hybrid
compression method to construct both 4% and HSS matrix representations for kernel matrices.
SMASH is written in MATLAB and its C language implementation is still under development.
STRUMPACK [12, 28] uses a randomized algebraic compression method to efficiently construct
HSS matrix representations for a general class of dense matrices. STRUMPACK supports MPI

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 3. Publication date: December 2020.

3:4 H. Huang et al.

0 1 2 3 4 5 6 7.8 910 5 6

/\ K (X, X[(X, X J (X, X5 JK (X, X
o, 2 K (X1, X1)| K (X1, X2)

/\ /\ (X, XK (X0, XafK (X, Xs fK (X4, X

L 3 N 4 N 5 N 6 . I (X5, X | (X5, X4 |K (X5, X5 (X5, X
A /\ K(X5, X1)|K (X2, X5)

78 010 K (Xo. X3 K (Xo. X K (X6, X5 [K (X6, X6

Partition Tree Level 1 Level 2 Level 3

Fig. 1. Illustration of a three-level hierarchical partitioning of a set of points X in one-dimensional space and
the associated partitioning of a kernel matrix K(X, X). In this partition tree, level (1) = {1, 2}, level*(2) =
{3,4,5,6}, and level™ (3) = {7, 8,9, 10,5, 6}. In each level [, K(X, X) is partitioned into non-overlapping blocks
K(X;,X;) with i, j € level™ ().

distributed memory parallelization for fast matrix-vector multiplications and fast matrix solve.
Recently, an H? matrix library for GPUs has also been developed [5].

2 H? MATRIX REPRESENTATION AND H? MATRIX-VECTOR MULTIPLICATION

Consider a kernel matrix K (X, X) defined by a non-oscillatory kernel function K (x, y) that is trans-
lationally invariant and symmetric, and a set of points X in a low-dimensional space. This section
describes an H? matrix representation of K (X, X), H? matrix construction based on the proxy
point method, and 2 matrix-vector multiplication. The following discussion applies to both scalar
and tensor kernel functions K(x, y), e.g., both the Laplace and the Stokes kernels.

2.1 H? Matrix Representation

Interpolative decomposition. AnID [9, 17] represents or approximates a matrix A € R™™ in the
low-rank form UAj, where U € R"™* has bounded entries, Ay e Rk*™M contains k rows of A, and
k is the rank. An ID approximation defined this way is said to have error below the error threshold
& if the 2-norm of each row of A—UA;j is bounded by ¢. Using an algebraic approach, an ID
approximation with a given rank or a given error threshold can be calculated using the strong rank-
revealing QR (SRRQR) decomposition [17] or using the pivoted QR decomposition. Specifically, an
ID approximation of a kernel matrix block K(Xj, Yy) can be written as K(Xo, Yo) ~ UK (Xid, Yo)
where K(Xiq, Yy) contains a subset of the rows in K(Xj, Yy) and Xjq is a subset of Xj.

Hierarchical partitioning of X and K(X, X). To construct an H? matrix representation, the first
step is to hierarchically partition the points in X. Assume X is in a d-dimensional space and let 8
be a box with equal-length edges that encloses X. The box B is partitioned into 2¢ smaller same-
sized boxes by bisecting all its edges. Each smaller box is further partitioned recursively in the
same way until the number of points in a box is less than a prescribed constant. This hierarchical
partitioning of B can be represented by a 2¢-ary partition tree 7~ whose nodes correspond to the
boxes. We define the root node of 7 to be at level 0, its children nodes to be at level 1, and so on.
We also define the leaf level to be level L.

Each level of the partition tree defines a non-overlapping partitioning of the set of points X. This
partitioning is defined using the set of nodes at a given level of the partition tree. To generalize
the concept of the set of nodes at a given level to the case of possibly non-perfect partition trees,
let level® (I) denote the union of all the nodes in level [and all the leaf nodes above level [(toward
the root). The caption of Figure 1 gives examples of level* (I) for an example partition tree.

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 3. Publication date: December 2020.

H2Pack: High-performance H? Matrix Package 3:5

3 4 5 6 7.8 910 5 6 .3 4 5 6 78910 5 6
K (X3,Y3) I (¥5. X5
K (Yo, Xo
K (X4, Ys
(K (Xs5,Ys
(¥ X
K(X,Ys) I (v, X4
Level 2 Level 3 Level 2 Level 3

(a) blocks K(X;, Y;) with i € level*(I),] = 2 or 3 (b) blocks K(Y;, X;) with i € level*(I),l =2 or 3

Fig. 2. Illustrations of the low-rank blocks K(Xj, Y;) and K(Y;, X;) for the partition tree in Figure 1. The low-
rank blocks are colored yellow for level 2 and green for level 3. For level 2, these blocks are labeled explicitly.
In level 3, note that some of these blocks are not contiguous. The hatched block K(Xo, Xs) is a partially
admissible block, since it is within K(Xy, Y5) in (a) but not within K(Ys5, X5) in (b).

Now, let X; denote the set of points lying in box i and corresponding to node i in the tree. At
any level [, {X;};cievel+ (1) defines a non-overlapping partitioning of the set of points X, i.e.,

XiN Xj = (for distinct i,j € level* (I) and Uielevel* (1) X;=X.

For the kernel matrix itself, {K(X;,X})}; jelevel+() defines a non-overlapping partitioning of
K(X,X). See Figure 1 for an example of a partition tree and the associated matrix partitioning
at each level.

Inadmissible, admissible, and partially admissible blocks. In an 9H? matrix representation, a kernel
block K (X, Y.) is considered numerically low-rank if X, is in a box and Y. is in the far field of the
box. The far field of a box is defined as the area of all the boxes that are least one box width away
from the box. For any box i in some level [, we split boxes in level (I) into two subsets ¥; and N;
as

i = {k € level*(I) | box k is in the far field of box i} and N; = level™ () \ 7.

Let Y; = Ugcs X be the set of all points in the far field of box i. Then, K(X;, ;) for each box i with
nonempty ¥; is considered to be numerically low-rank. Thus, the numerically low-rank blocks at
each level can be denoted as K(X;, Y;) or K(Y;, X;) for all nodes i € level®(I). Note that if K(X, X)
is symmetric, then K(Y;, X;) = K(X;, Y)T. See Figure 2 for an illustration of these low-rank blocks.

A block K(X;,X;) that is contained in the low-rank blocks K(Xj;, Y;) or K(Y},X;) is thus also
low-rank. Based on this observation, the blocks in {K(Xj, X;)};, jelevel+(1) can be categorized into
three classes:

e inadmissible blocks: if K(X;, X;) is not within K(Xj, ;) and not within K(Y}, X;) (equivalent
toX;NY; =0and X; NY; = 0);

o admissible blocks: if K(X;, Xj) is within both K(X;, Y;) and K(Y;, X;) (equivalent to X; C Y;
and X; C Yj);

e partially admissible blocks: if K(X;, X;) is within K(X;, Y;) but not within K(Y}, X;) (equiva-
lent to X; € Y; and X; N'Y; = 0) or if K(X;, X;) is not within K(X;, Y;) but within K(Y}, X;)
(equivalent to X; N'Y; = 0 and X; C Y)).

See the hatched block in Figure 2 for an example of a partially admissible block.

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 3. Publication date: December 2020.

3:6 H. Huang et al.
The concept of “partially admissible blocks” is new to the standard 9{? matrix representation.
More details follow later in this section.

Compression of low-rank blocks. We express a low-rank approximation of each K(Xj, Y;) in an
ID form,

K(X;,Y:) =~ UK(X9, 7)), (1)
where X;d is a subset of X; and K(X;?d, Y;) contains a subset of the rows in K(Xj, Y;). For a non-
leaf box i with children {iy, iy, .. ., is}, the above ID approximation is formed and computed by a

nested approach (to be described in Section 2.2) in an H? matrix representation. Precisely, the two
ID components U; and X;d are recursively defined in the nested form,

Ui=| . |R and X‘cXfuxid. . uxicx,)
Ui

with some matrix R; to be computed. Based on Equation (2), U; for each non-leaf node is not
explicitly formed but can be recovered recursively from quantities at all the descendants of
node i.

Each inadmissible block K (X;, X;) is considered to be full-rank. Each admissible block K (X, X;)
is numerically low-rank and can be compressed as

K(Xi. X)) ~ UKL XU 3)

based on the compression of K(X;,Y;) and K(Y;,X;) in Equation (1). Each partially admissible
block K(X;, X;) can be compressed as

UiK(X9,X;) if K(X;,X;) is within K(X;, Y;)
K(Xi, X;) ~ {K(Xi,XJi.d)UjT if K(X;. X;) is within K(Y;,X;) ° “)

based on the compression of K(X;, Y;) or K(Y;, X;) in Equation (1).
H? matrix representation. The H? matrix representation of K(X, X) consists of three parts:

e dense inadmissible blocks K (X;, X;) with both i and j being leaf nodes.

e low-rank approximations Equation (3) of all the admissible blocks K(X;, X;) that are not
contained in larger admissible or partially admissible blocks.

e low-rank approximations Equation (4) of all the partially admissible blocks K(X;, X;) that
are not contained in larger admissible or partially admissible blocks.

Denote the three sets of the node pairs (i, j) associated with the above three sets of kernel blocks
as D, A, and Ap, respectively. See Figure 3 for an example of these three sets of blocks making
up an H? matrix representation. As can be easily verified, these three sets of kernel blocks exactly
form a non-overlapping partitioning of K(X, X). The components stored by an /{* matrix include
the following:

e U;and Xli.d for each leaf node i with nonempty 7;;

e R;and X}d for each non-leaf node i with nonempty 7;;

e intermediate blocks denoted by B; ; for each (i,j) € A U A,. Block B;; is one of blocks
K(X ;d, X]i.d), K (Xli.d, X;j), or K(X;, XJi.d) in the low-rank approximation Equation (3) or Equa-
tion (4) of K(X;, Xj);

e inadmissible blocks K(X;, X;) denoted by D; ; for each (i, j) € D.

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 3. Publication date: December 2020.

H2Pack: High-performance H? Matrix Package 3:7

(X, Xa [(Xa, Xo JIC(Xa, X5 K (X3, X

K(X1,X1)|K(X1,X2)

(X, XK (X, XaJK (X, X5 K (X, X

(K (X5, XK (X5, Xo K (X5, X5 K (X5, X

K(Xo, X1)| K(X2, X>)

(X, Xa K (X, Xy K (X, X5 K (Xe, X

Level 1 Level 2 Level 3 H? matrix rep.

Fig. 3. Illustration of a 3-level {2 matrix representation associated with the partition tree in Figure 1. In-
admissible blocks are white in all levels, level 2 has admissible blocks (yellow), and level 3 has admissible
blocks (green) and partially admissible blocks (blue). The % matrix representation is made up of specific
inadmissible and admissible blocks in levels 2 and 3 and the partially admissible blocks in level 3.

All the intermediate and inadmissible blocks can be computed using only the sets {X;} and
{X;d} for all i, which can be stored economically. Instead of precomputing and storing these
intermediate and inadmissible blocks, they can be dynamically computed when needed, using
only {X;} and {Xid}. This provides a tradeoff between storage and computation.

More details on partially admissible blocks. In the standard {? matrix representation, all the
partially admissible blocks characterized above are treated as admissible blocks and are compressed
into the form Equation (3) (instead of Equation (4)) where the corresponding U; and X l@d for each
node i are computed by the ID approximation of K(X;, Y;) with Y; defined as some superset of Y;.

Taking the partially admissible block K (X5, Xy) in Figure 3 as an example, we have Y5 = Xj,
Ys = X3 U Xy, and Yy = Yo = X7 U X5 U X;. Note that K(Xs, Xo) is within K(Xs, Y5) but not within
K (X5, Ys). Thus, by the ID approximation of K(Xs, Y5) and K(Xo, Ys), the block K (X5, Xo) can only
be compressed into the form Equation (4). Meanwhile, by the ID approximation of K (Xs, Ys) and
K(Xo, Yo) in the standard H? matrix representation, the block K (X5, Xs) can be compressed into
the form Equation (3).

Since Y; in the standard ? matrix representation is defined as a superset of Y; for each node
i, K(X;,Y;) has larger numerical rank than K(Xj,Y;) (can be much larger in rare cases), leading
to a larger rank for the approximation of each admissible or partially admissible block K (X;, X;).
Thus, the H? matrix representation using partially admissible blocks introduced in this article
typically has smaller storage cost and faster matrix-vector multiplications than the standard H*
matrix representation. The concept of partially admissible blocks has a counterpart in FMM and
is necessary for the exact equivalence between H? matrix-vector multiplication and FMM [30].

2.2 H? Matrix Construction

9H? matrix construction consists of two parts: (1) computing the ID approximation of K(X;, Y;) for
each node i with non-empty 7; via a nested approach and (2) computing the intermediate blocks
associated with A U A, and the inadmissible blocks associated with . As just mentioned in
the previous paragraph, the second part is optional. The nested approach to computing these ID
approximations is as follows.

For a leaf node i, the ID approximation of K(X;,Y;) is directly computed using the proxy
point method (to be described in Section 2.3). For a non-leaf node i with children {iy, iz, ..., is},
the ID approximations associated with all these children nodes must be computed first. Then,
since X; = X;, U...UX; , K(X;,Y;) can be split into blocks K(X;,, Y;) with i, € {i1,iz,...,is}. By

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 3. Publication date: December 2020.

3:8 H. Huang et al.

* *
y Iy
% * * s ox *
| f e [
K 3 * *
% : S R ET .
4 r * A *
E %
* L *
ol « . * . * .
* * % * *
* *
* % *
(a) K(x,y) = log(|x — yl) (b) K(x,y) = exp(—|x — y|*) (c) K(x,y) = exp(~0.1|x — y|?)

Fig. 4. Examples of the proxy points selected by Algorithm 1 for various kernel functions with X = [-1,1]?,
Y =[-7,71%\ [-3,3]%, and &p = 10710, The three sets have 37, 103, and 58 proxy points, respectively.

definition, the points in Y; are in the far field of box i and thus are also in the far field of each child
box i, ie., Y; C Y;,. Asaresult, the computed ID approximation K(X;,,Y;,) = K(X Y;,) asso-
ciated with i, gives the approximation K(X;,,Y;) = U; K(X li.j, Y;). Together, K(X;, Yl) is split and
approximated as

KX, Y] [UnKXELY)] (o, KX}, Y1)
K07 K(X,-‘z, | UizK(X;f, Wl | U | K(X;;, ol)
K (Xi;, Yi) U; K(X‘d Y;) Ui, K(X}f, Y;)
Denoting X; = X id Xi dy. ..U Xf, an ID approximation of the last block above K (X;, Y;) is com-

puted using the proxy pomt method as
KX, Y;) ~ RKX4Y;), X9cX cx;.

Plugging this approximation into Equation (5), we get the ID approximation K(X;,Y;) =
U,K (X%d, Y;) with U; defined in the nested form Equation (2) using the computed R;.

2.3 The Proxy Point Method

The H? matrix construction above is dominated by the ID approximation of K(X;,Y;) for leaf
nodes i and K(X;, Y;) for non-leaf nodes i. All these approximated kernel blocks share the same
form K(X.,Y,), where X, is a set of points in a box X and Y, is a set of points in a compact
subdomain Y of the far field of X, as illustrated in Figure 4. In general, Y, has far more points than
X,.. The proxy point method [31] can efficiently construct an ID approximation of K(X., Y,) with
X, X Y, lying in a pair of compact domains X x Y as follows.

First select a set of so-called proxy points Y, in Y following the selection scheme Algorithm 1 (to
be described later). Then compute an ID approximation of K(X,, Y,) algebraically using the pivoted
OR decomposition as K(X,, Y,) = UK (X4, Y,) with X4 C X,. Using the computed U, and X', the
ID approximation of K(X., Y,) is then directly defined as K(X., Y.) ~ U.K(X!, Y,). In most cases,
Y, has far fewer points that Y, and thus the above proxy point method is far more efficient than
the direct ID approximation of K(X,, Y.). Numerically, when a relative error threshold ¢4 is used
for the algebraic ID approximation of K (X, Y},), the defined ID approximation of K(X., Y.) usually
has relative error approximately &q.

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 3. Publication date: December 2020.

H2Pack: High-performance H? Matrix Package 3:9

Selection of the proxy points. The selection scheme given in Algorithm 1 was proposed in Refer-
ence [31]. The basic idea is to first discretize K(x, y) in X X Y into matrix K(Xi, Y1). Steps 2 and 3
in this algorithm compresses this matrix as K(X1, Y1) & K(X1, Y,)K(X,, Y,) 'K (X,, Y1) with O(e,)
error. Due to the low-rank property of K(x, y), it can be proved that, if |X;| and |Y;]| are sufficiently
large,

K(x,y) =~ K(x, Yp)K(Xp, Y,) 'K(Xp,y) + O(ep), (x,y) € X X Y,
plug in X, Y. _
L K (X, Ya) & K(Xa, Y)K(X), Yp) UK (X, Ya) + O(ep).
The proxy point method exactly computes an ID approximation of K(X.,Y,) and thus can also
be viewed as a recompression of the above O(e,)-accuracy approximation of K(X., Y.). Usually,
the parameter ¢, can be set to one or two orders of magnitudes smaller than the error threshold
specified for the proxy point method. The sizes of X; and Y; should be large enough to guarantee
the accuracy O(e,) of the above function approximation to K(x,y), and also to guarantee well-
boundedness of this specific vector function K(X,,Y,)'K(X,,y) in Y, which is critical for the
accuracy of the proxy point method. More explanations can be found in Reference [31].

This selection scheme is computationally expensive and only depends on K(x,y) and X x Y.
With more sample points X; and Y3, the set of proxy points Y), selected by Algorithm 1 is more ef-
fective in terms of controlling the accuracy of the proxy point method based on Y}, but Algorithm 1
becomes more expensive. In H2Pack, the numbers of sample points in X; and Y; in Algorithm 1 are
heuristically chosen. We used |X;| = 1,000 and |Y;| = 15,000 for the various kernel functions and
pairs of domains that were tested numerically (see Section 4). An adaptive choice of the number
of sample points can be developed and applied if necessary. The ID approximation of K (X, Y7) at
Step 2 of Algorithm 1 is computed using a randomized method [22] instead of the pivoted QR de-
composition, for better efficiency. Figure 4 illustrates several examples of the selected proxy points
for different kernel functions.

ALGORITHM 1: Proxy point selection scheme

Input: K(x,y), X, Y, ¢p.
Output: proxy points Yj.
1: Sample domains X and Y to obtain two sets of uniformly distributed points X; and Y; with high point
density, respectively.
2: Compute an ID approximation K (X1, Y1) = U1K (X}, Y1) with error threshold &), VIYil.
3: Compute a pivoted QR decomposition K(Xp, Y1)P = Q(Ry1, Rz) where P is a permutation matrix, Q is an
orthogonal matrix, and R is an |X,| X | X, | upper-triangular matrix.
4: Let Y, be the subset of points in Y7 that corresponds to the | X, | columns of R; after permutation.

Applying Algorithm 1 to select proxy points for each ID approximation in {* matrix construc-
tion is expensive and impractical. Instead, we can reuse a set of selected proxy points Y, for all the
ID approximations associated with nodes in one level of the construction. Specifically, note that all
the boxes in the same level are of the same size and K(x, y) is assumed to be translationally invari-
ant. Thus, at each level [, we select X as a box in level [and Y as a large compact subdomain of the
far field of X, and apply Algorithm 1 with X X Y to select a set of proxy points Yé. For each node
iin level [, let z; be a translation vector such that X; + z; lies in X and Y; + z; lies in Y/ (Y should
be selected large enough to contain Y; + z; for each node i). Since K(X;, Y;) = K(X; + z;, Yi + z;),
we can apply the proxy point method with the shifted proxy points ng — z; to compute the ID
approximation of K(X;, ;) (or K(X;, Y;)).

As a result, at each level, we only need to construct a set of proxy points Yff for just one pair of
domains X x Y. The corresponding proxy points for all the nodes in one level can be obtained by

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 3. Publication date: December 2020.

3:10 H. Huang et al.

proper translation of Yli. Also, another option is to precompute and store multiple sets of proxy
points for box domains X of different sizes (with sufficiently large domains Y) given a kernel
function. In H? matrix construction, we simply need to load the corresponding proxy point set
based on the box domain size in each level. Combining the proxy point method with the
matrix construction described in the last subsection, the overall 92 matrix construction for a
kernel matrix K(X, X) is summarized in Algorithm 2.

ALGORITHM 2: H? matrix construction for K(X, X)

1: e construct a hierarchical partitioning of X, which gives a L-level partition tree 7.
2: forl=L,L-1,...,1do
3: e construct a set of proxy points in for just one box in level I.
4: parfor all nodes i in level I do (dynamic scheduling)
5: if i is a leaf node then
6: e compute U; and X}d from an ID approximation of K(Xj, Y;) using the proxy point method
with a proper translation of Y‘é.
7: else if i is a non-leaf node with children {iy, io, ..., is} then
8: e construct)A{id = Xf U...uU Xf
9: e compute R; and X li.d from an ID approximation of K (X;, Y;) using the proxy point method
with a proper translation of Yé.
10: end if
11: end parfor
12: end for

13: o (optional, can be dynamically computed) compute the inadmissible blocks D; ; for all (i,j) € D and
compute the intermediate blocks B;,j for all (i,j) € A U Ap.

2.4 H? Matrix-vector Multiplication

Consider computing b = K(X, X)q.Foreachnode i € 7 ,let gq; and b; denote the subvectors of g and
b, respectively, corresponding to the point subset X; in X. The H? matrix-vector multiplication
algorithm [21], summarized in Algorithm 3, traverses all three sets of kernel blocks K(X;, X})
corresponding to D, A, and A, in the H* matrix representation and accumulates the products
K(Xi, X])qj

First, initialize the result vector b to zero. For each inadmissible block K (X, X;) with (i, j) € D,
the dense matrix computation is straightforward: b; = b; + K(X;, X;)q;. For each admissible block
K(X;, Xj) with (i, j) € A, the computation

bi = bi + K(Xi,Xj)q]' X bi + UiBi,jUquj,
can be computed in three steps Uquj, B,-,j(Uquj), and b; = b; + U; (B,»,j(Uquj)) giving three phases

in H? matrix-vector multiplication: forward transformation, intermediate multiplication, and
backward transformation.

Forward transformation. This phase computes y; = Uquj for all the nodes j € 7. Note that y;
can be used for all the admissible blocks with columns defined by X;. For each leaf node j, y; is

directly computed. For each non-leaf node j with children {j1, jz, . . ., js }, y; is recursively computed
using y;,, Yj,, - - - » Yj, associated with the children as
T T
Uj1 qj Uj1 4, Yj
y=U'g =R | - =R =R
u'| lgj, Ulq;, Yjs

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 3. Publication date: December 2020.

H2Pack: High-performance H? Matrix Package 3:11

Intermediate multiplication. This phase computes z;; = B; jy; for each admissible block
K(X;, X;) with (i, j) € A. Note that all the z; ; sharing the node i are to be multiplied by U; and
added to b; as

bi = bi + Z(i,j)eﬂ UiZi,j = bi + U; (Z(i,j)eﬂ Zi’j), for eachnode i € 7.

Only multiplying U; once, it is more efficient to first sum over all these z; j, then apply U;, and
lastly add to b;. Thus, for each node i € 77, this phase further computes z; = }(; jyen 2i. ;-

Backward transformation. This phase computes b; = b; + U;z; for each node i € 7. For a non-

leaf node i with children {iy, iy, . .., is}, b; is recursively accumulated as
Ui Ui [Rizils,
bizbi+UiZi=bi+ Rilizbi+ s
Ui Ui, [Rizili,

where [R;z;];, denotes the subvector of R;z; associated with U;,. Thus, b; = b; + U;z; is reduced to
b, = bi, + U;,[Rizi];, with all the children i,. Meanwhile, b;, = b;, + U;,z;, needs to be computed
as well. Only multiplying U;, once, it is more efficient to first overwrite z;, by z;, = z;, + [Rizi]i,
and then multiply U;, by z;,. Recursively, this phase traverses the tree from the root to the leaves
to overwrite each z; by z; = z; + [R,z,]; with p the parent of i. As a result, for each leaf node i, z;
accumulates the intermediate multiplication results from all its ancestors. Adding U;z; to b; for all
the leaf nodes in 7~ finishes this phase. See the lines 21-28 in Algorithm 3 for the exact calculation.

For each partially admissible block K (X;, X;) with (i, j) € A,, its multiplication by g;,
bi = bi + UiBi,jqj or bi = b,’ + Bi,jUquj

can be similarly computed following the above process for the admissible blocks. In fact, these
multiplications can be merged into the above three phases for admissible blocks.

H? matrix-matrix multiplication. Consider computing C = K(X, X)Q. It is straightforward to
extend the above H*? matrix-vector multiplication to the multiplication by multiple vectors simul-
taneously. We only need to replace vectors q;, b;, y;, and z; in Algorithm 3 by matrices Q;, C;, Y;,
and Z;, respectively, where Q; and C; are the row subsets of Q and C associated with X;.

3 PARALLEL IMPLEMENTATION
3.1 Parallelization and Load-balancing

In Section 2, we presented H? matrix construction (H?-construction) and H? matrix-vector mul-
tiplication (#{%-matvec). For the parallel implementation of these two operations, we consider
calculation dependencies associated with each node in the partition tree. In 9 2-construction, the
first step is to compute specific ID approximations associated with each node i with nonempty
¥;. In this step, the ID approximation at a non-leaf node cannot be computed until the ID ap-
proximations at all its children nodes are computed, corresponding to a post-order traversal of
the partition tree. The optional step of computing inadmissible and intermediate blocks has no
restriction on calculation orders for each block. In H%-matvec, the forward transformation phase
has the same calculation order as the ID approximations in 9H?-construction, i.e., the calculation
of y; for a non-leaf node i requires the calculation of {y;, } with the children {ij} of i. The backward
transformation phase has calculation order reverse to that of the forward transformation phase,
corresponding to a pre-order traversal of the partition tree. Meanwhile, there is no restriction on
the calculation order in the intermediate and dense multiplication phases, since the matrix-vector
multiplications by different B; ; and D; ; are completely independent.

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 3. Publication date: December 2020.

3:12

H. Huang et al.

ALGORITHM 3: H? matrix-vector multiplication

11:

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

22:
23:
24:
25:
26:
27:
28:
29:

30:
31:
32:

w0 S kW

: e Initialize result vector b to zero.

e Initialize temporary vectors z;, Vi € 7 to zero.

> Step 1: Forward transformation

:for!l=LL-1,...,1do

parfor all nodes i in level I do (greedy static partitioning)
if i is a leaf node then
yi = Ul'qi.
else

yi = Rl.T(yT yg, .. .,yZ)T with children {iy, io, ..., is} of node i.

i 9
end if 1
end parfor
end for

> Step 2: Intermediate multiplication
parfor all (i, j) € A do (hybrid load balancing)
Zi =2z +Bi,jyj.
end parfor
parfor all (i, j) € A, do (hybrid load balancing)
if K(Xi,Xj) ~ U;Bi, then
zi = zj + Bj jqj.
else(note: K(X;, Xj) = Bi,jUjT)
b;j = b; + Bi,jyj.
end if
end parfor
> Step 3: Backward transformation
for/=1,2,...,Ldo
parfor all non-leaf node i in level I do (greedy static partitioning)

zi, = zi, + [Rizi]i, with all children iq € {i1,i2,...,is} of node i.
end parfor
end for
parfor all leaf node i in 7~ do (hybrid load balancing)
bi = b,' + Ujz;.
end parfor

> Step 4: Dense multiplication

parfor all (i, j) € D do (hybrid load balancing)
bi = bi + Di’jqj.

end parfor

Based on the above observations, the calculations in H?-construction and 9 %-matvec can be

categorized into two types. The first type is level-by-level calculation, where the calculation at node
i rely on the calculations at nodes on the level above or below. The second type is independent
calculation, where the calculations associated with different B; ; or D; ; are independent. We apply
different strategies to parallelize these two types of calculations within the OpenMP framework.

Level-by-level calculations. Let the calculation at node i in a level-by-level computation phase be

referred to as task i. In the following phases, task i needs the results of multiple tasks in a lower
level or the result of a task in an upper level:

e the ID approximations in H?-construction (lines 2-12 in Algorithm 2),
e the forward transformation in 9 2-matvec (lines 3-11 in Algorithm 3),
e the backward transformation in H?-matvec (lines 22-29 in Algorithm 3).

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 3. Publication date: December 2020.

H2Pack: High-performance H? Matrix Package 3:13

In these computational tasks, the accessed matrices K(X;, Y,), K ()2 i» Yp), Ui, and R; usually have
size smaller than 1,000 X 1,000. For such small matrices, the column-pivoted QR and matrix-vector
multiplications usually have poor parallel performance when using a large number of processors.
Instead of parallelizing these elementary computational kernels, we choose to parallelize across
the tasks in each level of 7. Specifically, we parallelize the for-loops in line 4 of Algorithm 2 and
in lines 4, 23, and 27 of Algorithm 3 with OpenMP.

We use different load-balancing strategies for the three computation phases listed above. In 9 2-
construction, since the size of K (Xi, Y,) at each non-leaf node is not known in advance, we use
OpenMP dynamic scheduling to balance the workload in the parallel loop of ID approximations
in each level. In H2-matvec, the performance bottleneck of the forward and backward transfor-
mations is the transfer of U; and R; from memory to processors. Since the sizes of U; and R; are
known at this stage, we use a greedy static partitioning scheme to approximately balance the total
sizes of matrices that each processor needs to load from memory.

Independent calculations. Let calculations associated with a block B; ; or D; ; in an independent
computation phase be referred to as task (i, j) with (i, j) in the node pair sets A U A, or D. In the
following phases, all tasks are independent and can be performed in parallel without restriction:

e the optional construction of B; j and D; ; in H*-construction (lines 13 in Algorithm 2),
e the intermediate multiplication phase in {*-matvec (lines 12-21 in Algorithm 3),
e the dense multiplication phase in H?-matvec (lines 30-32 in Algorithm 3).

Note that, for each B; j or D; ;, both the computation cost of forming it and the communication cost
of transferring it from memory to a processor are proportional to its block size, which is known
after the ID approximations in #H?-construction.

We first consider exploiting the symmetry property of these blocks B; j and D; ;. Since K (X, X) is
symmetric, B; ; = B}:i if (i, j) is in A U A}, (corresponding to an admissible or partially admissible
block) and D; ; = DJ.T’i if (i, j) is in D (corresponding to an inadmissible block). Thus, for each pair
of (i, j) and (j, i) in A U Ay, only B; ; is computed and the following two matrix-vector multiplica-
tions in the intermediate multiplication phase will be performed on one processor simultaneously:

T
Zi:Zi+Bi,jyja Zj:Zj+Bi,jyi-

The same approach applies to each pair of (i, j) and (j, i) in D with blocks D; ;.

We use a hybrid approach for parallelizing and load-balancing the independent calculations. In
this hybrid approach, a static partitioning is used for approximately balancing the workload on
each processor and a dynamic task scheduler is used for polishing the load balance. We use the
construction of blocks B; ; to illustrate this approach. For P processors, we partition all tasks into
kP disjoint task units (1 < k < 20 is a prescribed constant) with a greedy algorithm such that the
total size of matrix blocks in each task unit is approximately the same. Each processor has k — 1
initial task units, which leads to approximately the same computation time for initial task units on
each processor. The last P task units form a task pool for dynamic task scheduling. After finishing
all its k — 1 initial task units, a processor starts to steal task units one by one from the task pool
until all task units have been consumed. If k = 1, then the hybrid approach is equivalent to a static
task partitioning scheme. The construction of blocks D; ;, the intermediate multiplication phase,
and the dense multiplication phase are all parallelized in the same way.

Combining the utilization of the symmetry property and the hybrid parallelization approach
causes anew problem. In the intermediate and dense multiplication phases, two or more processors
may update the same z; or b; simultaneously, leading to incorrect results. Three solutions to this
problem are available. The first is to discard utilizing the symmetry property and then to partition

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 3. Publication date: December 2020.

3:14 H. Huang et al.

the corresponding tasks in a way that each z; and b; can be updated by only one processor. This
approach is unfavorable, since it leads to more data transfer between memory and processors and
higher computation cost. The second solution is to use atomic operations for updating z; and b;.
However, atomic operations are much slower than their non-atomic counterparts. In H2Pack, we
use the third solution that each processor uses local copies of z; and b; to accumulate local matrix-
vector multiplication results. All local copies of z;/b; are summed after the intermediate/dense
multiplication phase to form the actual z;/b;. The additional cost for summing local copies of z;
and b; is negligible compared to the main phases in H?-matvec.

For multiplying multiple vectors simultaneously, H2Pack provides a separate 92 matrix-matrix
multiplication (2-matmul) function. In H2-matmul, vectors q;, b;, y;, and z; in H ?-matvec are re-
placed by blocks Q;, C;, Y;, and Z;, and the matrix-vector multiplications in JH?-matvec are replaced
by matrix-matrix multiplications. The multiplicand matrix Q could be stored in either row-major
or column-major format, with the output matrix C stored in the same format. {2-matmul adopts
almost the same parallelization and load-balancing scheme as 9{2-matvec. One exception is that
H*-matmul does not utilize the symmetry property of B; ; and D; ; blocks. Instead, independent
calculation tasks with B; j and D; ; are partitioned in a way that each Z; and C; is only updated
by one processor. Processor-local Z; and C; copies are not used, since they could require a large
amount of memory.

3.2 Performance Optimizations

We optimize H2Pack for state-of-the-art multi-core and many-core architectures. We first intro-
duce the H2Pack kernel function interface in Section 3.2.1. Next, we discuss two running modes of
H2Pack in Section 3.2.2. Then, we illustrate the use of intrinsic functions for better vectorization
in Section 3.2.3.

3.2.1 Kernel Function Interface. The performance of H2Pack relies on the performance of eval-
uating the kernel function. H?-construction and H*-matvec using just-in-time mode (to be dis-
cussed in Section 3.2.2) both need to evaluate a large number of kernel matrix blocks. H2Pack
provides an optimized implementation of the 3D Laplace kernel K(x,y) = 1/|x — y|, which can be
modified easily for other kernel functions. In the following, we use the 3D Laplace kernel as an
example to show the H2Pack kernel function interface.

H2Pack provides a C language interface. A driver program must provide a pointer to a ker-
nel matrix evaluation (KME) function to use H2Pack. Listing 1 shows a KME function for the 3D
Laplace kernel. Lines 2-4 in Listing 1 are parameters of a KME function: two sets of point coor-
dinates coord® and coordl and the kernel matrix kmat to be returned. Input coord® is a 3xn@
row-major matrix with leading dimension 1d@ and contains the coordinates of n@ points. Each
column of coord® stores a point coordinate. The same storage scheme applies to coordl. The
function returns an n@xn1 kernel matrix stored in a row-major matrix kmat with leading dimen-
sion 1dm. Note that a KME function should be single-threaded and should only use variables or
memory that can be updated by the current thread.

The above design of a KME function is to facilitate the vectorization of multiple kernel function
evaluations. It would be easier for users to program a function evaluating the kernel function for
just a single pair of points. However, such a single-value function must be compiled together with
H2Pack so that the compiler can auto-vectorize multiple kernel function evaluations. Using KME
functions is more flexible: H2Pack only needs to be compiled once for different KME functions,
and a KME function can be auto-vectorized by the compiler (line 14 in Listing 1) or manually
vectorized (to be discussed in Section 3.2.3).

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 3. Publication date: December 2020.

H2Pack: High-performance H? Matrix Package 3:15

1 | void Laplace_3D_krnl_eval(

2 const double *coord@, const int 1d@, const int no,

3 const double *coordl, const int 1d1, const int n1,

4 double * restrict kmat, const int ldm

5 1)

6 |{

7 const double *x@ = coordd + 1d0 * @, *x1 = coordl + 1ld1 =* 0;
8 const double *y@® = coordd + 1do * 1, xyl = coordl + 1d1 =* 1;
9 const double *z@ = coordd + 1d@ * 2, xz1 = coordl + 1ld1 =* 2;
10 for (int 1 = @0; i < n@; i++)

11 {

12 double x@i = x@[i], yei = yo[il, zoi = zo[il;

13 double xkmat_i = kmat + i *x ldm;

14 #pragma omp simd // Requires the compiler to vectorize this loop
15 for (int j = 0; j < nl1; j++)

16 {

17 double dx = x1[j] - x0i;

18 double dy = y1[j] - yoi;

19 double dz = z1[j] - z0i;

20 double r2 = dx * dx + dy *x dy + dz *x dz;

21 double rinv = (r2 == 0.9) ? 0.0 : 1.0 / sqrt(r2);

22 kmat_i[j] = rinv;

23 }

24 3

25 |}

Listing 1. Sample KME function for the 3D Laplace kernel.

3.2.2 Ahead-of-time and Just-in-time Running Modes. H2Pack provides two running modes of
‘H*-construction and H?-matvec: (1) ahead-of-time (AOT) mode computes and stores all B; ; and
D; ; in ‘H*-construction, and (2) just-in-time (JIT) mode computes each B; ; and D; ; when needed
in H*?-matvec without storing them. These two modes give flexibility in how to obtain perfor-
mance on different computing platforms for different kernel functions. We note that any imple-
mentations of H? matrix representations based on ID approximations, e.g., the SMASH library
and the STRUMPACK library, can also use both AOT and JIT modes.

The AOT mode is designed to avoid redundant calculation when the cost of kernel function
evaluation is high. To form B, ; and D; j, a large number of kernel function evaluations are needed.
Kernel functions with transcendental arithmetic (e.g., the Gaussian kernel K(x,y) = exp(—|x —
y|?) and the logarithm kernel K (x, y) = log(|x — y|)) have much higher evaluation cost than those
without transcendental arithmetic. In such cases, using AOT mode could be more efficient than
using JIT mode for H2?-matvec. As a tradeoff, AOT mode has much larger storage cost than JIT
mode due to the storage of B; j and D, ;.

The performance bottleneck of H*-matvec in AOT mode is the transfer of B; ; and D; ; from
memory to processors. Two optimizations are proposed for %-matvec in AOT mode, targeting
the intermediate and dense multiplication phases. First, we optimize for non-uniform memory
access (NUMA) architectures. The memory for B; j and D; ; blocks used by a processor is bound
to its NUMA node to reduce memory access latency and to fully utilize memory bandwidth of
all NUMA nodes in a computer. Second, we implement a bi-matrix-vector multiplication (BMV)
function that computes Ax, and AT x; with a matrix A and two input vectors x,, x; simultaneously
to avoid loading the same B; ; or D; ; block twice from memory or processor cache. This function
is not available in any existing optimized linear algebra library.

The JIT mode is designed to reduce the storage cost of an 9 matrix representation. The to-
tal size of all B; ; and D; ; blocks is usually 10 to 100 times larger than that of other H? matrix

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 3. Publication date: December 2020.

3:16 H. Huang et al.

1 | void Laplace_3D_bi_krnl_matvec(

2 const double *coord@, const int 1d@, const int no,

3 const double *coordl, const int 1d1, const int n1,

4 const double *xin@, const double *xxinl,

5 double * restrict xout@®, double * restrict xoutil

6 |)

714

8 const double *x@ = coord@ + 1d@ * @, *x1 = coordl + 1ld1 * 0;
9 const double *y@® = coordd + 1de * 1, xyl = coordl + 1ld1 =* 1;
10 const double *z@ = coordd + 1de * 2, xz1 = coordl + 1ld1 *x 2;
11 for (int 1 = @0; i < n@; i++)

12 {

13 double x0i = x@[i], y@i = yo[il, zei = zo[il, xinl1_i = xin1[il;
14 double sum_i = 0.0;

15 #pragma omp simd // Requires the compiler to vectorize this loop
16 for (int j = 0; j < nl; j++)

17 {

18 double dx = x1[j] - x0i;

19 double dy = y1[j] - yoi;

20 double dz = z1[j] - z0i;

21 double r2 = dx * dx + dy x dy + dz x dz;

22 double rinv = (r2 == 0.0) ? 0.0 : 1.0 / sqrt(r2);

23 sum_i += rinv * xin@[j];

24 xout1[j] += rinv * xinl;

25 }

26 xout@[i] += sum_i;

27 }

28 |}

Listing 2. Sample BKM function for the 3D Laplace kernel.

components. For a given memory size, by not storing B; ; and D; ; blocks, H2Pack in JIT mode
can handle problems with far more points. We use the cache-blocking technique to optimize the
intermediate and dense multiplication phases in JIT mode. Specifically, we partition B; ; or D; ;
into multiple subblocks such that each subblock and the coordinates associated with this subblock
can fit in processor L2 data cache. A small processor-private buffer is used for each processor to
temporarily store a dynamically generated subblock. Once a subblock is generated, we use this
subblock and the BMV function to compute two matrix-vector multiplications immediately. Since
only the point coordinates need to be transferred from memory to processors, the intermediate
and dense multiplication phases also have much smaller memory bandwidth pressure in JIT mode
than in AOT mode.

We further design a matrix-free approach for H?-matvec in JIT mode using a bi-kernel matvec
(BKM) function (note that #?-matmul does not use the BKM function). For two point sets X
and X;, a BKM function calculates two matrix-vector multiplications K (Xy, X1)xo and K (X1, Xo)x;
at the same time without explicitly storing any subblock of K(Xj, X;) or K(Xj,Xp). Compared
to using a KME function, using a BKM function eliminates the transferring of the dynamically
generated subblocks of B; ; and D; ; between a processor and its L2 data cache. Listing 2 shows a
sample BKM function for the 3D Laplace kernel. Lines 2-4 in Listing 2 are parameters of a BKM
function: two sets of point coordinates coord® and coord1 stored in the same way as in the KME
function, two input vectors xin@, xin1, and two output vectors xout®, xout1. Input xin@ stores
xo and xout® stores the result of K(Xjy, X;)xo. Input xin1 stores x; and xout® stores the result
of K(X1,Xo)x1. The only difference between a KME function and a BKM function is that once
a kernel function value is calculated (line 21 in both Listing 1 and 2), a KME function stores this
value to a matrix but a BKM function consumes this value and discards it immediately. If the kernel

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 3. Publication date: December 2020.

H2Pack: High-performance H? Matrix Package 3:17

1 |void Laplace_3D_krnl_eval_vec(

2 const double *coord@, const int 1d0, const int n@,

3 const double *coordl, const int 1d1, const int n1,

4 double * restrict kmat, const int ldm

5 1)

6 |{

7 const double *x@ = coord@ + 1d0 * @, *x1 = coordl + 1ldl *x 0;
8 const double *y@® = coord@ + 1do x 1, *xyl = coordl + 1d1 % 1;
9 const double *z@ = coord@ + 1do * 2, *z1 = coordl + 1ldl *x 2;
10 int nl_vec = (nl_vec / SIMD_LEN_D) * SIMD_LEN_D;

11 for (int i = 0; i < n@; i++)

12 {

13 double xkmat_i = kmat + i * ldm;

14 // Vectorized loop

15 vec_d xQi_v = vec_setl_d(x0[il);

16 vec_d y@i_v = vec_setl_d(yo[il);

17 vec_d zQi_v = vec_setl_d(zo[il);

18 for (int j = @; j < nil_vec; j += SIMD_LEN_D)

19 {

20 vec_d dx_v = vec_sub_d(vec_loadu_d(x1 + j), x0Qi_v);
21 vec_d dy_v = vec_sub_d(vec_loadu_d(yl + j), y@i_v);
22 vec_d dz_v = vec_sub_d(vec_loadu_d(z1 + j), z0i_v);
23 vec_d r2_v = vec_mul_d(dx_v, dx_v);

24 r2_v = vec_fmadd_d(dy_v, dy_v, r2_v);

25 r2_v = vec_fmadd_d(dz_v, dz_v, r2_v);

26 vec_d rinv_v = vec_frsqrt_d(r2_v);

27 vec_storeu_d(kmat_i + j, rinv_v);

28 }

29 // Remainder loop

30 double x0i = x@[i], y@i = yo[il], z@i = zo[il;

31 for (int j = nl_vec; Jj < nl; j++)

32 {

33 double dx = x1[j] - x0i;

34 double dy = y1[j] - yoi;

35 double dz = z1[j] - z0i;

36 double r2 = dx * dx + dy * dy + dz * dz;

37 double rinv = (r2 == 0.0) ? 0.0 : 1.0 / sqrt(r2);
38 kmat_i[j] = rinv;

39 3}

40 }

41 |}

Listing 3. Sample KME function for the 3D Laplace kernel using vector wrapper functions.

function evaluation is cheap (for example, for the 3D Laplace kernel) and we have fast processors
but moderate memory bandwidth, then H?-matvec in JIT mode using a BKM function could be
faster than ?-matvec in AOT mode.

3.2.3 Vector Intrinsics. Effectively vectorizing the KME and BKM functions is critical to high
performance of H2Pack. In general, KME and BKM functions for scalar kernels (kernels that re-
turn a single value for a pair of points) using the same framework as Listing 1 and 2 can be auto-
vectorized by compilers. As an alternative, H2Pack provides a set of vector wrapper functions in-
dependent of the processor instruction set for manually vectorizing calculations with intrinsic
functions. The optimized KME and BKM functions provided in H2Pack for the 3D Laplace kernel
use these vector wrapper functions. Currently the vector wrapper functions supports AVX, AVX2,
and AVX-512 instruction sets on x86 architecture. (Other architectures can also be supported in
the future.)

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 3. Publication date: December 2020.

3:18 H. Huang et al.

Listing 3 shows a sample KME function for the 3D Laplace kernel using vector wrapper func-
tions. This function has two major parts in its inner loop: a manually vectorized loop using vec-
tor wrapper functions (lines 15-28) and a remainder loop (lines 30-39) using scalar operations.
All vector wrapper functions are named as vec_{opname}_{d/s}, where opname is the operation
name and the suffix indicates the floating point data type (double (d) or float (s)). Constant value
SIMD_LEN_D indicates the number of double words in each vec_d vector data type. This constant
is determined according to the processor instruction set and H2Pack compilation options. Vector
wrapper functions used in Listing 3 are the most useful vector wrapper functions for programming
KME and BKM functions. A detailed list of all vector wrapper functions and their usage can be
found in the H2Pack user manual. For BKM functions, H2Pack automatically pads artificial points
in coord®, coordl and pads extra zeros in xin®, xin1 to guarantee that n@ and n1 are multiples
of SIMD_LEN_D. The padding aims to simplify the programming of BKM functions, since the
remainder loop can be eliminated.

Calculating the reciprocal square root (RSQRT) is an expensive step in evaluating 1/|x — y|,
which appears in many kernel functions. We thus implement a fast RSQRT function with x86 in-
trinsic functions based on the approach proposed in Reference [27]. In this fast RSQRT function, a
dedicated intrinsic function is first used to calculate an approximate RSQRT value with relative er-
ror less than 4 x 107, Then, two Newton-Raphson iterations are performed using the approximate
RSQRT value as an initial guess to obtain a more accurate RSQRT result with O(107!*) relative er-
ror. The same or similar approaches to computing RSQRT have also been used in some existing
FMM implementations [7, 23].

4 NUMERICAL EXPERIMENTS

We consider two types of point distributions: random distributions on the unit sphere in 3D (sphere
point sets) and random distributions in the unit ball in 3D (ball point sets). For experiments in Sec-
tion 4.1 and 4.5, we use an Intel Skylake node on the Stampede2 supercomputer at Texas Advanced
Computing Center. This node has two sockets and 192-GB DDR4 memory. Each socket has an In-
tel Xeon Platinum 8160 processor with 24 cores and 2 hyperthreads per core. For experiments in
Section 4.2, we use an Intel Skylake node described above and an Intel Knights Landing node.
The latter has an Intel Xeon Phi 7210 many-core processor with 64 cores and 4 hyperthreads per
core, 16-GB MCDRAM high-bandwidth memory, and 96-GB DDR4 memory. H2Pack is compiled
using Intel C compiler 2018.0.2 with optimization flags “-xHost -O3” on both nodes. Intel MKL
2018.0.2 is used in H2Pack to perform general matrix-vector multiplications (xGEMV) and general
matrix-matrix multiplications (xGEMM). Double precision floating point is used for storage and
calculations in H2Pack.

4.1 Accuracy Tests

We first measure the accuracy of % matrix representations constructed by H2Pack under different
settings. We consider three kernel functions:

1
lx=y|’
e 3D Gaussian kernel: K(x,y) = exp(—|x — y|?),

_ _nNT
e 3D Stokes kernel: K(x,y) = |x1y 1+ & |€c)—(:|3y) .

e 3D Laplace kernel: K(x,y) =

Table 1 shows the relative error of ?-matvec for the two types of point sets with different
prescribed relative error thresholds for the ID approximation in H ?-construction. Both the sphere
and ball point sets contain 1 X 10° points. All the multiplicand vectors for {%-matvec have entries
randomly and uniformly generated between [—1, 1]. Each reported relative error is the average

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 3. Publication date: December 2020.

H2Pack: High-performance H? Matrix Package 3:19

Table 1. Relative Error of H{%-matvec in H2Pack for Several Kernel Functions with Different
Prescribed Relative Error Thresholds for the ID Approximation in J{2-construction
(“ID approx. relerr”)

ID approx. relerr 1.00E-2 1.00E-4 1.00E-6 1.00E-8 1.00E-10 1.00E-12
sphere 8.42E-4 3.68E-6 4.30E-8 6.35E-10 2.97E-11 9.20E-13

3D Laplace
ball 8.21E-4 4.13E-6 4.54E-8 8.05E-10 4.27E-11 5.30E-13
D Gaussian sphere 3.38E-3 1.89E-5 2.35E-7 4.25E-9 1.73E-11 2.38E-13
ball 3.57E-3 1.53E-5 1.46E-7 1.13E-9 1.09E-11 3.85E-12
3D Stokes sphere 1.26E-3 7.06E-6 6.02E-8 3.73E-10 2.46E-12 2.71E-12
ball 1.42E-3 7.72E-6 3.20E-7 2.61E-9 2.69E-11 2.76E-12

Both sphere and ball points sets are tested. Each point set contains 1 X 10° points.

result obtained by 10 independent 9 %-matvec tests. The prescribed relative error threshold varies
from 1 x 1072 to 1 x 1072, As can be observed, for all tested kernel functions and types of point
sets, the relative errors of /{?-matvec are controlled by the prescribed threshold. Further, when the
relative error threshold is above 1 x 1078, the actual relative error is usually an order of magnitude
smaller than the threshold.

4.2 Scalability Tests

We now demonstrate the strong scalability (fixed problem size) of H2Pack. We test the 3D Laplace
kernel with a ball point set of size 2 X 10° points and with 1 X 107° prescribed matvec relative error.
Under this setting, the constructed {* matrix representation in AOT mode can be completely
stored in the 16-GB MCDRAM high-bandwidth memory of the Knights Landing node. On the
Skylake node, we run H2Pack using one thread per core on all 48 cores. On the Knights Landing
node, we run H2Pack using one thread per core on all 64 cores. Figure 5 shows the timings of
H?-construction (“build”) and H2-matvec (“matvec”) of H2Pack in AOT and JIT modes on the
two different nodes.

For HH?-construction, JIT mode is faster than AOT mode on both types of compute nodes, since
AOT mode additionally calculates and stores B; ; and D; ; blocks. For both modes, however, H*-
construction does not fully scale to all the cores on both types of nodes. The reason is that the per-
formance of H?-construction is limited by memory bandwidth. The major computational kernel
in HH2-construction in both modes is the column-pivoted QR factorization to compute ID approxi-
mations (lines 6 and 9 in Algorithm 2). On both nodes, this computational kernel takes more than
95% and 50% of JH%-construction time in JIT mode and AOT mode, respectively. Meanwhile, this
computational kernel has a low computation-to-memory-access ratio and thus its performance is
determined by the memory access bandwidth. Intel VTune (Intel performance profiling software)
reports that the achieved memory bandwidth of this computational kernel is more than 80% of the
peak memory bandwidth when using all cores on both nodes.

For H?-matvec, JIT mode is faster than AOT mode on the Skylake node while AOT mode is faster
than JIT mode on the Knights Landing node, which is due to hardware differences between the
Skylake node and the Knights Landing node. The Knights Landing node has high memory band-
width but its single core performance is only moderate. On this node, the parallel efficiencies of
H?%-matvec in JIT and AOT modes are 89.0% and 70.5%, respectively, showing excellent scalability.
Intel VTune reports that H2-matvec in AOT mode only utilizes about 65% of the peak MCDRAM
memory bandwidth on the Knights Landing node when using all 64 cores. The Skylake node has
powerful processor cores with moderate memory bandwidth. On this node, the parallel efficiencies
of H?-matvec in JIT and AOT modes are only 33.1% and 42.3%, respectively. Intel VTune reports

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 3. Publication date: December 2020.

3:20 H. Huang et al.

—©—AOT build

101 L —S—AOT build A 101
—%—AOT matvec 1 —*%—AOT matvec
—©—JIT build g —©—JIT build
—*%—JIT matvec —*%—JIT matvec

—% —JIT matvec projected

Seconds
Seconds

* ‘ . ‘

1 2 4 8 16 24 48 1 2 4 8 16 32 64

Number of cores on the Skylake node Number of cores on the Knights Landing node

Fig. 5. H2Pack 2 construction (“build”) and H? matvec (“matvec”) timings in AOT mode and JIT mode on
an Intel Skylake node (left) and an Intel Knights Landing node (right) using different numbers of cores. Pro-
jected H2-matvec time in JIT mode assuming all processors always run at 3.5 GHz (“JIT matvec projected”)
on the Skylake node is also plotted as a reference. A ball point set with 2 X 10° points and a 10~® prescribed
matvec relative error are used.

that H%-matvec in AOT mode achieved 79% and 90% of the peak memory bandwidth when using
24 and 48 cores on the Skylake node, suggesting that the lower parallel efficiency in AOT mode
than in JIT mode is caused by the memory bandwidth limit. Furthermore, the lower parallel effi-
ciency in JIT mode on the Skylake node than on the Knights Landing node (i.e., 33.1% vs. 89.0%) is
due to Intel Turbo Boost technology on Intel Xeon Platinum processors. If only one core is active
on a Xeon Platinum 8160 processor (on the Skylake node), then this core runs at 3.5 GHz. The
more active cores, the lower the clock frequency of the cores. If all 24 cores are active, then all the
cores run at only 2.0 GHz. In comparison, all cores on the Knights Landing node always run at
1.4 GHz. This decrease of core frequency reduces the parallel efficiency of H %-matvec in JIT mode
that requires a large number of kernel function evaluations. In Figure 5, we also plot the projected
execution time for H2-matvec in JIT mode on the Skylake node assuming that all its cores always
run at 3.5 GHz. The projected parallel efficiency of H?-matvec in JIT mode is 72.5% when using
48 cores.

Lastly, we also measure the performance of /?-matvec in JIT mode in terms of giga floating-
point operations per second (GFLOPS). To measure this performance, we note that evaluating one
value of the 3D Laplace kernel requires 19 floating-point operations (8 for the squared distance, 1
for the approximate RSQRT, and 10 for two Newton iterations). On the Skylake node, H*-matvec
in JIT mode achieved 1047 GFLOPS (34.9% of the peak performance). On the Knights Landing node,
JH?-matvec in JIT mode achieved 651 GFLOPS (24.5% of the peak performance).

4.3 Performance Improvements by BKM and Vectorization

The efficient evaluation of kernel functions is crucial to the overall performance of ?-
construction and H?-matvec (in JIT mode). In this section, we study the performance improve-
ments brought by the BKM interface and vector wrapper functions. Table 2 shows the timing

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 3. Publication date: December 2020.

H2Pack: High-performance H?* Matrix Package 3:21

Table 2. Timing Results (in Seconds) of H2-construction and H?-matvec
Using Different Implementations of KME and BKM Functions for 3D
Gaussian Kernel: No Vectorization (“no-vec”), Automatic Vectorization by the
Intel C Compiler (“auto-vec”), and Manual Vectorization by Vector Wrapper
Functions (“wrap-vec”)

#pts x10° Ball Sphere

1 4 16 1 4 16
H?-construction
KME no-vec 0.046 0.142 0.583 0.051 0.127 0.400
KME auto-vec 0.045 0.131 0.574 | 0.049 0.123 0.396
KME wrap-vec 0.043 0.128 0.566 0.050 0.123 0.394
H?-matvec
KME no-vec 0.086 0.211 0.504 | 0.035 0.117 0.499
KME auto-vec 0.028 0.075 0.188 0.012 0.041 0.172
KME wrap-vec 0.018 0.057 0.146 0.008 0.035 0.119
BKM no-vec 0.092 0.264 0.735 0.040 0.138 0.586
BKM auto-vec 0.028 0.076 0.209 | 0.012 0.041 0.178
BKM wrap-vec 0.013 0.037 0.118 0.006 0.029 0.089

The JIT mode and relative error threshold 107° are used in all the tests.

results of H?-construction and *-matvec using different implementations of KME and BKM
functions for the 3D Gaussian kernel K (x, y) = exp(—|x — y|?): no vectorization, automatic vec-
torization by the Intel C compiler, and our manual vectorization by vector wrapper functions.

As explained in Section 4.2, H ?-construction in JIT mode is dominated by the column-pivoted
QR factorization, and thus only gains minor performance improvements from vectorization. Mean-
while, both automatic and manual vectorization of KME and BKM functions can lead to 300-400%
speedup in H2-matvec, with the manual vectorization being 20-50% faster than the automatic
vectorization. Comparing KME and BKM functions for 2-matvec, using KME functions without
vectorization or with automatic vectorization can be even faster than using BKM functions. This
is because the dense matrix-vector multiplication after evaluating a kernel block by KME func-
tions is vectorized in the BLAS library. However, based on the manual vectorization, using BKM
functions is 20-35% faster than using KME functions.

4.4 Comparison between H?-matvec and H?*-matmul

In this section, we compare the performance of H ?-matvec and H?-matmul in H2Pack for multi-
plying multiple vectors. In the latter, the vectors are assumed to be available at the same time and
the multiplications are performed simultaneously. Figure 6 shows the timings of ?-matvec and
FH?-matmul to multiply different numbers of vectors in both AOT and JIT modes. The runtime
of H?-matmul increases much more slowly with the number of vectors compared to H?-matvec.
This indicates that calculating B; ; and D; ; blocks in JIT mode or transferring these blocks from
main memory to processor cache in AOT mode are very expensive compared to the actual multipli-
cation. For a single vector, H *-matmul is slower than {*-matvec, because the symmetry property
of B; j and D; ; is not exploited (see Section 3.1). In AOT mode, the performance of H*-matmul is
further affected by NUMA. H?-matvec uses a fixed workload partitioning and B; ; and D; ; blocks
are optimized for this fixed partitioning using the first-touch policy. H?-matmul uses a different
workload partitioning, making it hard to optimize for NUMA without almost doubling the storage.

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 3. Publication date: December 2020.

3:22 H. Huang et al.

T T T

—%— JIT matvec
— © —JIT matmul
—¥— AOT matvec
— © — AOT matmul

Time (seconds)
w
T

—o———9
2r lo-———0——o0-———0-———0 "7
1+ #ﬂe———of””@*_*f)
0 L1 L 1 | I L | |
12 4 8 12 16 20 24 28 32

Number of vectors

Fig. 6. Timings of H%-matvec and H?-matmul (in seconds) in AOT and JIT modes for multiplying different
numbers of vectors. The test settings are as follows: the 3D Laplace kernel, a ball point set with 1.6 x 10°
points, prescribed relative error threshold 107%, and the Skylake node with 48 cores. The results are qualita-
tively similar for other kernel functions and point sets. Column-major format for the matrix of vectors was
used; the timings for row-major format are very similar. The corresponding H2-construction in AOT and JIT
modes take 2.54 s and 1.11 s, respectively.

4.5 Comparison with Fast Multipole Methods

In this section, we compare the performance of H2Pack with two FMM libraries: the FMM3D
library implements the standard FMM and the PVFMM library implements the kernel indepen-
dent FMM (KIFMM). We note that FMM3D works for the 3D Laplace, Stokes, and Helmholtz ker-
nels, PVFMM works for kernel functions from potential theory, and H2Pack can work for non-
oscillatory kernel functions in general. For all the libraries, we use the same sets of points and
test using the 3D Laplace kernel. The number of points in X ranges from 1 X 10° to 1.6 x 10°. For
all three libraries, we specify that a box is further partitioned into smaller boxes if it contains
more than 400 points in the hierarchical partitioning of X. For H2Pack, JIT mode is used. All three
libraries are compiled using Intel C/C++/Fortran compilers and Intel MPI 2018.0.2 with optimiza-
tion flags “-xHost -03.” Intel MKL 2018.0.2 is used to perform optimized xGEMV, xGEMM, and
fast Fourier transformations that appear in these three libraries. Double precision floating point is
used for storage and calculations in all three libraries.

We run all three libraries using one thread per core on all 48 cores on a Skylake node. Tables 3
to 5 show the test results corresponding to relative multiplication accuracy of approximately 1075,
1078, and 10711, respectively. The tables show results for the following quantities:

e Precomputation cost. The runtime of specific precomputations in H2Pack and PVFMM
that can be reused for different sets of points but not for different accuracy requirements
and for different kernel functions. (FMM3D does not have precomputations.) In H2Pack,
the precomputation involves computing the proxy points. In PVFMM, the precomputation
involves computing fixed translation operators in KIFMM and storing them into a file.

e Setup cost. The runtime of all the computations other than the precomputations above
before matrix-vector multiplications, i.e., hierarchical partitioning of X in all the libraries
and H?-construction in H2Pack.

e Peak memory. The peak memory usage recorded by the operating system during the entire
program execution (precomputation, setup, and matrix-vector multiplication).

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 3. Publication date: December 2020.

H2Pack: High-performance H? Matrix Package 3:23

Table 3. Numerical Results of the Three Libraries with Relative
Accuracy around 107>

H2Pack
#pts x10° precomp (s) setup (s) matvec (s) mem (MB) storage (MB) relerr max/avg rank
sphere 1 0.185 0.062 0.005 519 15 1.63E-05 29/15
sphere 2 0.194 0.082 0.010 436 30 1.91E-05 28/15
sphere 4 0.187 0.125 0.018 569 59 2.12E-05 28/15
sphere 8 0.239 0.223 0.037 839 119 2.34E-05 28/15
sphere 16 0.278 0.444 0.075 1345 234 2.64E-05 28/15
ball 1 0.159 0.073 0.010 669 43 1.68E-05 69/40
ball 2 0.162 0.160 0.019 823 89 1.86E-05 69/35
ball 4 0.157 0.173 0.035 836 163 2.14E-05 71/39
ball 8 0.194 0.249 0.090 1181 308 2.56E-05 70/38
ball 16 0.189 0.784 0.149 2418 723 2.84E-05 70/37
PVFMM
#pts x10° precomp (s) setup (s) matvec (s) mem (MB) storage (MB) relerr degree rank
sphere 1 1.161 0.069 0.020 1164 1138 7.51E-06 5 150
sphere 2 1.117 0.087 0.027 1388 1186 8.85E-06 5 150
sphere 4 1.114 0.134 0.056 1799 1271 6.41E-06 5 150
sphere 8 1.163 0.328 0.132 2753 1461 9.91E-06 5 150
sphere 16 1.115 0.686 0.230 4528 1845 9.70E-06 5 150
ball 1 1.113 0.042 0.035 1128 1134 1.99E-05 5 150
ball 2 1.113 0.083 0.030 1355 1186 1.49E-05 5 150
ball 4 1.114 0.113 0.075 1751 1252 1.85E-05 5 150
ball 8 1.113 0.221 0.267 2547 1394 2.98E-05 5 150
ball 16 1.115 0.691 0.219 4518 1832 1.54E-05 5 150
FMM3D
#pts x10° setup (s) matvec(s) mem (MB) relerr degree rank
sphere 1 0.041 0.120 238 8.81E-06 15 256
sphere 2 0.085 0.163 414 8.88E-06 15 256
sphere 4 0.183 0.329 747 9.41E-06 15 256
sphere 8 0.441 0.626 1397 8.61E-06 15 256
sphere 16 1.025 1.259 2784 9.56E-06 15 256
ball 1 0.042 0.167 302 6.55E-06 15 256
ball 2 0.081 0.168 353 6.85E-06 15 256
ball 4 0.170 0.192 554 6.77E-06 15 256
ball 8 0.443 1.266 1830 6.84E-06 15 256
ball 16 0.955 1.261 2025 6.75E-06 15 256

“Precomp” refers to the precomputations in H2Pack and PVFMM. “Mem” refers to the peak mem-
ory usage recorded by the operating system. “Storage” refers to the storage cost of translation
operators in PVFMM and that of 92 matrix components in H2Pack.

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 3. Publication date: December 2020.

3:24 H. Huang et al.

Table 4. Numerical Results of the Three Libraries with Relative
Accuracy around d 1078

H2Pack
#pts x10° precomp (s) setup (s) matvec (s) mem (MB) storage (MB) relerr max/avg rank
sphere 1 0.349 0.095 0.006 778 47 1.20E-08 77/39
sphere 2 0.419 0.143 0.012 717 90 1.43E-08 78/36
sphere 4 0.612 0.199 0.023 908 176 1.74E-08 78/36
sphere 8 0.727 0.326 0.047 1320 352 1.83E-08 79/37
sphere 16 0.948 0.589 0.097 2046 687 2.04E-08 77/36
ball 1 0.417 0.135 0.021 857 137 1.71E-08 194/96
ball 2 0.352 0.247 0.044 1294 331 1.68E-08 201/78
ball 4 0.339 0.312 0.078 1652 561 2.19E-08 203/94
ball 8 0.500 0.417 0.141 2246 984 2.58E-08 206/90
ball 16 0.438 1.190 0.340 4642 2362 3.07E-08 205/78
PVFMM
#pts x10° precomp (s) setup (s) matvec (s) mem (MB) storage (MB) relerr degree rank
sphere 1 2.981 0.048 0.030 1397 1211 2.35E-08 8 384
sphere 2 2.967 0.089 0.052 1597 1266 2.46E-08 8 384
sphere 4 2.966 0.138 0.122 2112 1358 1.75E-08 8 384
sphere 8 2.966 0.471 0.201 3288 1574 2.57E-08 8 384
sphere 16 2.967 0.658 0.420 4927 1994 2.70E-08 8 384
ball 1 2.970 0.043 0.041 1233 1205 3.57E-08 8 384
ball 2 2.957 0.087 0.058 1530 1264 2.48E-08 8 384
ball 4 2.955 0.115 0.118 1948 1331 3.55E-08 8 384
ball 8 2.959 0.336 0.330 2800 1477 4.07E-08 8 384
ball 16 2.954 0.883 0.454 5052 1971 3.97E-08 8 384
FMM3D

#pts x10° setup (s) matvec (s) mem (MB) relerr degree rank

sphere 1 0.041 0.156 298 1.10E-08 21 484

sphere 2 0.084 0.295 454 1.21E-08 21 484

sphere 4 0.184 0.535 860 1.14E-08 21 484

sphere 8 0.418 1.099 1615 1.19E-08 21 484

sphere 16 1.027 2.138 3235 1.28E-08 21 484

ball 1 0.042 0.172 366 1.13E-08 21 484

ball 2 0.081 0.210 359 1.10E-08 21 484

ball 4 0.171 0.863 632 1.11E-08 21 484

ball 8 0.452 1.037 2113 1.11E-08 21 484

ball 16 0.926 1.322 2330 1.18E-08 21 484

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 3. Publication date: December 2020.

H2Pack: High-performance H? Matrix Package 3:25

Table 5. Numerical Results of the Three Libraries with Relative Accuracy around 10711

H2Pack
#pts x10° precomp (s) setup (s) matvec (s) mem (MB) storage (MB) relerr max/avg rank
sphere 1 0.962 0.159 0.009 1222 114 5.66E-12 165/73
sphere 2 1.018 0.203 0.019 1160 236 6.06E-12 165/70
sphere 4 1.151 0.292 0.035 1616 437 7.90E-12 165/69
sphere 8 1.022 0.493 0.072 2398 864 8.43E-12 165/69
sphere 16 1.728 0.903 0.144 4035 1707 9.13E-12 166/68
ball 1 0.906 0.590 0.035 1676 391 2.35E-12 444/184
ball 2 0.873 0.847 0.082 2270 796 6.65E-12 450/109
ball 4 0.792 1.502 0.177 3590 1604 9.93E-12 444/168
ball 8 1.011 2.438 0.305 5426 2709 1.86E-11 450/167
ball 16 0.941 4.057 0.633 9442 5539 2.50E-11 449/109
PVFMM
#pts x10° precomp (s) setup (s) matvec (s) mem (MB) storage (MB) relerr degree rank
sphere 1 9.700 0.055 0.054 1953 1445 1.29E-11 12 864
sphere 2 9.559 0.104 0.126 2196 1517 1.47E-11 12 864
sphere 4 9.558 0.159 0.234 2555 1624 9.75E-12 12 864
sphere 8 9.562 0.600 0.491 3535 1893 1.44E-11 12 864
sphere 16 9.575 1.014 0.890 5496 2392 1.69E-11 12 864
ball 1 9.547 0.056 0.060 1527 1434 2.76E-11 12 864
ball 2 9.578 0.158 0.151 2086 1510 2.22E-11 12 864
ball 4 9.652 0.180 0.181 2514 1578 2.73E-11 12 864
ball 8 9.595 0.410 0.430 3552 1880 4.31E-11 12 864
ball 16 9.607 0.784 1.123 5544 2351 2.17E-11 12 864
FMM3D

#pts x10° setup (s) matvec(s) mem (MB) relerr degree rank

sphere 1 0.034 0.272 278 9.90E-12 29 900

sphere 2 0.078 0.472 553 1.08E-11 29 900

sphere 4 0.167 0.899 907 1.09E-11 29 900

sphere 8 0.375 1.698 1780 1.12E-11 29 900

sphere 16 0.917 3.541 3366 1.11E-11 29 900

ball 1 0.037 0.238 208 9.55E-12 29 900

ball 2 0.098 0.522 678 1.07E-11 29 900

ball 4 0.163 0.654 728 1.10E-11 29 900

ball 8 0.346 2.117 994 1.08E-11 29 900

ball 16 0.947 3.106 4502 1.14E-11 29 900

e Storage cost. The storage cost of the translation operators in PVFMM and of the H? matrix
components in H2Pack. (FMM3D does not report its storage cost.)

e Runtime and relative error of the multiplication. These results are averaged over 5
multiplications by random vectors for each point set X. For each multiplication, denoted as

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 3. Publication date: December 2020.

3:26 H. Huang et al.

an approximation A¢p2v = b = K(X, X)v, its relative error is measured as

VZies(bi — (Agpev);)?

\[Zies bl‘z

where S is a set of 10,000 indices randomly chosen from 1 to the length of b and the entries
{b;}ies are computed via direct matrix-vector multiplication.

e Degree and rank. The “degree” in PVFMM and FMM3D is an input parameter characteriz-
ing the number of expansion terms used for analytic compression of kernel matrix blocks.
In PVFMM, a degree of k corresponds to a rank-6k? analytic approximation of each block
to be compressed in the equivalent H* matrix representation. In FMM3D, a degree of k
corresponds to the approximation rank being (k + 1)?. For H2Pack, the resulting maximum
and average ranks of all the low-rank approximations in each constructed H? matrix are
listed.

relerr =

From the results, the cost for H?-construction (“setup”) in H2Pack scales linearly in the number
of points and increases with higher relative multiplication accuracy. For points in a unit ball, the
H2Pack setup cost can be much more expensive than the setup costs in PVFMM and FMM3D.
However, the setup cost of H2Pack is much cheaper for points on the unit sphere than in the
unit ball. This is due to the smaller approximation ranks for all the blocks compressed in #?-
construction.

The maximum and average approximation ranks in H2Pack are all much smaller than those
in PVFMM and FMM3D. The approximation ranks in H2Pack are different with different point
distributions, while PVFMM and FMM3D have fixed approximation ranks for both types of point
distributions. As a result, H2Pack is the fastest library for matrix-vector multiplications among the
three and this efficiency advantage becomes even greater when dealing with points on the unit
sphere, i.e., around 5 times faster than PVFMM and 25 times faster than FMM3D.

The storage cost of H2Pack is proportional to the number of points and the approximation
ranks in the constructed H? matrices. In comparison, the storage cost of PVFMM changes very
mildly under different problem settings. H2Pack has much smaller storage cost for small problems
compared with PVFMM but ultimately can have larger storage cost when the number of points or
the relative accuracy increases. For example, H2Pack begins to have more storage cost for § x 10°
points in the unit ball with relative accuracy 107!!. FMM3D does not report its storage cost but
theoretically only has very small storage cost for temporary components.

It is worth noting that the peak memory recorded by the operating system depends on the actual
implementations of these libraries and can only be used as a rough reference for comparing the
three different methods. As can be noted, H2Pack has its peak memory increasing much faster than
PVFMM and eventually has larger peak memory than PVFMM when dealing with large numbers
of points and high relative accuracy, e.g., 8 X 10° points in the unit ball with relative accuracy 10711,
Meanwhile, FMM3D also has increasing peak memory with more points but has the smallest peak
memory among the three libraries when dealing with a large number of points.

Compared to FMM3D, both H2Pack and PVFMM have relatively expensive precomputations.
For H2Pack, the precomputation involves the kernel-related proxy point selection. However, for
a given kernel function, the selected proxy points in H2Pack can be saved to a file and reused in
future computations. For certain kernel functions such as the Laplace and Stokes kernels, H2Pack
can also apply the proxy surface method [24] to generate the proxy points with negligible com-
putation cost. For PVFMM, the precomputation involves computing fixed translation operators
and its complexity depends on the kernel function and the degree parameter (which controls the

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 3. Publication date: December 2020.

H2Pack: High-performance H? Matrix Package 3:27

T T i i T 1008
—O—H2Pack setup
—©—PVFMM setup 90
—6—FMMB3D setup
—¥—H2Pack matvec | 1
—¥—PVFMM matvec
—¥—FMM3D matvec

80

70

60

50

Seconds

40

30

Parallel efficiency (percentage)

20

10

1 2 4 8 16 24 48 1 2 4 8 16 24 48
Number of cores on the Skylake node Number of cores on the Skylake node

Fig. 7. Setup and matvec timings (in seconds) and parallel efficiency (in percentage) using different numbers
of cores on a Skylake node for FMM3D, PVFMM, and H2Pack. A ball point set with 4 x 10° points and a 1073
prescribed matvec relative error threshold are used.

relative accuracy). These precomputed results in PVFMM are stored in files for reuse. Since the
precomputations in H2Pack and PVFMM can be reused when the kernel function and the relative
accuracy are fixed, the precomputation costs typically make no impact in practice.

Figure 7 shows the timings and parallel efficiencies of the “setup” and “matvec” procedures of
the three tested libraries. For H2Pack, the results in Figure 7 are similar to the results in Figure 5,
but the parallel efficiency of H?-matvec when using 48 cores is higher in Figure 7 (49.9% vs. 33.1%)
due to more points and a larger parallelism. The setup procedure is not parallelized in FMM3D and
not fully parallelized in PVFMM, leading to poor parallel efficiencies in FMM3D and PVFMM for
the setup. Although FMM3D has slightly better parallel efficiency in matvec compared to PVFMM
and H2Pack, its absolute matvec time is much larger than the matvec time of PVFMM and H2Pack.

To summarize, the numerical comparisons above show that FMM libraries typically have less
cost for setup and storage but also typically have slower matrix-vector multiplications than
H2Pack. Thus, FMM libraries are more suitable for problems where only a few matrix-vector mul-
tiplications are required per set of points, e.g., particle simulations. Meanwhile, H2Pack is more
suitable for problems where many matrix-vector multiplications are required per set of points, e.g.,
numerical solution of integral equations and Gaussian processes, so that the relatively expensive
H? construction cost can be amortized by many multiplications.

5 CONCLUSION

H2Pack provides linear-scaling matrix-vector multiplication for kernel matrices defined by non-
oscillatory kernel functions. Such multiplications are needed on their own in many applications,
but can also be used in iterative solvers for kernel matrix systems. The critical step for linear-
scaling matrix-vector multiplication is constructing the {? matrix representation of the kernel
matrix. In H2Pack, this is done by using the recently developed proxy point method. The advan-
tages of using the proxy point method are (1) greater generality compared to other methods (e.g.,
it works for Gaussian kernels) and (2) more effective block low-rank compression compared to

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 3. Publication date: December 2020.

3:28 H. Huang et al.

analytic methods such as those used in FMM. The latter is what makes H2Pack matrix-vector mul-
tiplication faster than kernel summation in FMM libraries. However, constructing the 4% matrix
representation in H2Pack is often more expensive than the setup phase in FMM libraries.

We have focused on translationally invariant kernels. This allows the proxy points for each box
(in a given level of the partition tree) to be translates of each other, thus reducing the overall cost
of proxy point selection. We have also focused on 2D and 3D problems, as is common for FMM
libraries. H2Pack can be extended to higher dimensions if a cheap method of selecting proxy points
in higher dimensions is available.

In standard {? matrix representations, blocks of the matrix are either admissible (represented
as a low-rank block) or inadmissible (represented as a dense block). In H2Pack, we introduce the
concept of partially admissible blocks. Such blocks arise with non-uniform distributions of points,
leading to non-perfect partition trees. By treating partially admissible blocks in the appropriate
way (rather than as either admissible or inadmissible), the representation of these blocks is more
efficient. The same technique exists in FMM libraries but not in existing H* matrix libraries.

H2Pack has been optimized for high-performance on shared-memory parallel computers. Im-
portant considerations are vectorization of kernel function evaluations, reducing memory traffic,
and load balancing. Just-in-time and ahead-of-time modes are provided to trade computation with
storage and memory traffic. Vectorization of kernel function evaluations is particularly impor-
tant in just-in-time mode, and a kernel function interface is described. Numerical tests show good
scaling of H2Pack matrix-vector multiplication with the number of cores. For constructing the
H? matrix representations, the performance with large numbers of cores is limited by the high
memory bandwidth requirement of the column-pivoted QR factorization used in the code.

REFERENCES

[1] Mario Bebendorf and Stefan Kunis. 2009. Recompression techniques for adaptive cross approximation. . Integr. Eq.
Appl. 21, 3 (2009), 331-357.
[2] Mario Bebendorf and Sergej Rjasanow. 2003. Adaptive low-rank approximation of collocation matrices. Computing
70, 1 (2003), 1-24.
[3] Steffen Borm. 2017, accessed: 2019-12-05. H2Lib. Retrieved from https://github.com/H2Lib/H2Lib/tree/community.
[4] Steffen Borm and Lars Grasedyck. 2005. Hybrid cross approximation of integral operators. Numer. Math. 101, 2 (2005),
221-249.
[5] Wajih Boukaram, George Turkiyyah, and David Keyes. 2019. Hierarchical matrix operations on GPUs: Matrix-vector
multiplication and compression. ACM Trans. Math. Softw. 45, 1, Article 3 (2019), 28 pages.
[6] Difeng Cai, Edmond Chow, Lucas Erlandson, Yousef Saad, and Yuanzhe Xi. 2018. SMASH: Structured matrix approx-
imation by separation and hierarchy. Num. Lin. Algebr. Appl. 25, 6 (2018), €2204.
[7] Aparna Chandramowlishwaran, Samuel Williams, Leonid Oliker, Ilya Lashuk, George Biros, and Richard Vuduc.
2010. Optimizing and tuning the fast multipole method for state-of-the-art multicore architectures. In Proceedings of
the 2010 IEEE International Symposium on Parallel Distributed Processing (IPDPS’10). 1-12.
[8] Shiv Chandrasekaran, Ming Gu, and Timothy P. Pals. 2006. A fast ULV decomposition solver for hierarchically
semiseparable representations. SIAM J. Matrix Anal. Appl. 28, 3 (2006), 603-622.
[9] Hongwei Cheng, Zydrunas Gimbutas, Per-Gunnar Martinsson, and Vladimir Rokhlin. 2005. On the compression of
low rank matrices. SIAM 7. Sci. Comput. 26, 4 (2005), 1389-1404.
[10] Eduardo Corona, Per-Gunnar Martinsson, and Denis Zorin. 2015. An O(N) direct solver for integral equations on
the plane. Appl. Comput. Harm. Anal. 38, 2 (2015), 284-317.
[11] William Fong and Eric Darve. 2009. The black-box fast multipole method. J. Comput. Phys. 228, 23 (2009), 8712-8725.
[12] Pieter Ghysels, Xiaoye S. Li, Francois-Henry Rouet, Samuel Williams, and Artem Napov. 2016. An efficient multicore
implementation of a novel HSS-structured multifrontal solver using randomized sampling. SIAM 7. Sci. Comput. 38,
5 (2016), S358-S384.
[13] Zydrunas Gimbutas, Leslie Greengard, Jeremy Magland, Manas Rachh, and Vladimir Rokhlin. FMM3D. Retrieved
December 5, 2019 from https://fmm3d.readthedocs.io.
[14] Leslie F. Greengard and Jingfang Huang. 2002. A new version of the fast multipole method for screened Coulomb
interactions in three dimensions. J. Comput. Phys. 180, 2 (2002), 642—658.

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 3. Publication date: December 2020.

https://github.com/H2Lib/H2Lib/tree/community
https://fmm3d.readthedocs.io

H2Pack: High-performance H? Matrix Package 3:29

(15]
(16]
(17]
(18]
(19]
[20]

[21]

[22]
(23]
[24]
[25]
[26]
[27]

(28]

Leslie F. Greengard and Vladimir Rokhlin. 1987. A fast algorithm for particle simulations. 7. Comput. Phys. 73, 2 (1987),
325-348.

Leslie F. Greengard and Vladimir Rokhlin. 1997. A new version of the fast multipole method for the Laplace equation
in three dimensions. Acta Numer. 6 (1997), 229-269.

Ming Gu and Stanley C. Eisenstat. 1996. Efficient algorithms for computing a strong rank-revealing QR factorization.
SIAM 3. Sci. Comput. 17, 4 (1996), 848-869.

Wolfgang Hackbusch. 1999. A sparse matrix arithmetic based on H-matrices. Part I: Introduction to #{-matrices.
Computing 62, 2 (1999), 89-108.

Wolfgang Hackbusch and Steffen Borm. 2002. Data-sparse approximation by adaptive H %-matrices. Computing 69,
1(2002), 1-35.

Wolfgang Hackbusch and Boris N. Khoromskij. 2000. A sparse H-matrix arithmetic. Part II: Application to multi-
dimensional problems. Computing 64, 1 (2000), 21-47.

Wolfgang Hackbusch, Boris N. Khoromskij, and Stefan A. Sauter. 2000. On H 2-matrices. In Lectures on Applied Math-
ematics: Proceedings of the Symposium Organized by the Sonderforschungsbereich 438 on the occasion of Karl-Heinz Hoff-
mann’s 60th birthday, Hans-Joachim Bungartz, Ronald H. W. Hoppe, and Christoph Zenger (Eds.). Springer, Berlin,
9-29.

N. Halko, P. Martinsson, and J. Tropp. 2011. Finding structure with randomness: Probabilistic algorithms for con-
structing approximate matrix decompositions. SIAM Rev. 53, 2 (2011), 217-288.

Dhairya Malhotra and George Biros. 2015. PVEMM: A parallel kernel independent FMM for particle and volume
potentials. Commun. Comput. Phys. 18, 3 (2015), 808-830.

Per-Gunnar Martinsson and Vladimir Rokhlin. 2005. A fast direct solver for boundary integral equations in two
dimensions. J. Comput. Phys. 205, 1 (2005), 1-23.

Per-Gunnar Martinsson and Vladimir Rokhlin. 2007. An accelerated kernel-independent fast multipole method in
one dimension. SIAM ¥. Sci. Comput. 29, 3 (2007), 1160-1178.

Victor Minden, Anil Damle, Kenneth L. Ho, and Lexing Ying. 2017. Fast spatial Gaussian process maximum likelihood
estimation via skeletonization factorizations. Multisc. Model. Simul. 15, 4 (2017), 1584-1611.

Keigo Nitadori, Junichiro Makino, and Piet Hut. 2006. Performance tuning of N-body codes on modern microproces-
sors: L. Direct integration with a hermite scheme on x86_64 architecture. New Astron. 12, 3 (2006), 169-181.
Francois-Henry Rouet, Xiaoye S. Li, Pieter Ghysels, and Artem Napov. 2016. A distributed-memory package for dense
hierarchically semi-separable matrix computations using randomization. ACM Trans. Math. Softw. 42, 4 (2016), 27:1-
27:35.

Ruoxi Wang. BBFMM3D. Retrieved December 5, 2019 from https://github.com/ruoxi-wang/BBFMM3D.

Xin Xing. 2019. The Proxy Point Method for Rank-structured Matrices. Ph.D. Dissertation. Georgia Institute of
Technology.

Xin Xing and Edmond Chow. 2020. Interpolative decomposition via proxy points for kernel matrices. SIAM J. Matrix
Anal. Appl. 41,1 (2020), 221-243.

Lexing Ying, George Biros, and Denis Zorin. 2004. A kernel-independent adaptive fast multipole algorithm in two
and three dimensions. J. Comput. Phys. 196, 2 (2004), 591-626.

Received December 2019; revised June 2020; accepted July 2020

ACM Transactions on Mathematical Software, Vol. 47, No. 1, Article 3. Publication date: December 2020.

https://github.com/ruoxi-wang/BBFMM3D

